Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories.

Ferroelectric nanostructures are attracting tremendous interest because they offer a promising route to novel integrated electronic devices such as non-volatile memories and probe-based mass data storage. Here, we demonstrate that high-density arrays of nanostructures of a ferroelectric polymer can be easily fabricated by a simple nano-embossing protocol, with integration densities larger than 33 Gbits inch(-2). The orientation of the polarization axis, about which the dipole moment rotates, is simultaneously aligned in plane over the whole patterned region. Internal structural defects are significantly eliminated in the nanostructures. The improved crystal orientation and quality enable well-defined uniform switching behaviour from cell to cell. Each nanocell shows a narrow and almost ideal square-shaped hysteresis curve, with low energy losses and a coercive field of approximately 10 MV m(-1), well below previously reported bulk values. These results pave the way to the fabrication of soft plastic memories compatible with all-organic electronics and low-power information technology.

[1]  Doan,et al.  Control of energy transfer in oriented conjugated polymer-mesoporous silica composites , 2000, Science.

[2]  A. J. Lovinger Ferroelectric Polymers , 1983, Science.

[3]  R. Waser,et al.  Low-voltage operation of metal-ferroelectric-insulator-semiconductor diodes incorporating a ferroelectric polyvinylidene fluoride copolymer Langmuir-Blodgett film , 2006 .

[4]  Jean-Marc Triscone,et al.  Physics of ferroelectrics : a modern perspective , 2007 .

[5]  Lei Zhang,et al.  Microimprinting and ferroelectric properties of poly(vinylidene fluoride-trifluoroethylene) copolymer films , 2007 .

[6]  A. Gruverman,et al.  Switching properties of self-assembled ferroelectric memory cells , 1999 .

[7]  P. Kam,et al.  : 4 , 1898, You Can Cross the Massacre on Foot.

[8]  Youn Jung Park,et al.  Localized Pressure‐Induced Ferroelectric Pattern Arrays of Semicrystalline Poly(vinylidene fluoride) by Microimprinting , 2007 .

[9]  K. Rabe,et al.  Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures , 2004, Science.

[10]  Zhijun Hu,et al.  High-throughput fabrication of organic nanowire devices with preferential internal alignment and improved performance. , 2007, Nano letters.

[11]  A. Jonas,et al.  Nanoscale control of polymer crystallization by nanoimprint lithography. , 2005, Nano letters.

[12]  Alexei Gruverman,et al.  Nanoscale ferroelectrics: processing, characterization and future trends , 2006 .

[13]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[14]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[15]  L. Bellaiche,et al.  Unusual phase transitions in ferroelectric nanodisks and nanorods , 2004, Nature.

[16]  J. Junquera,et al.  Critical thickness for ferroelectricity in perovskite ultrathin films , 2003, Nature.

[17]  T. Furukawa Ferroelectric properties of vinylidene fluoride copolymers , 1989 .

[18]  V. Fridkin,et al.  Nanoscale polarization patterning of ferroelectric Langmuir–Blodgett P(VDF-TrFE) films , 2007 .

[19]  U. Gösele,et al.  Mesoscopic ferroelectric cell arrays prepared by imprint lithography , 2003 .

[20]  Masamichi Kobayashi,et al.  Structural study of the ferroelectric phase transition of vinylidene fluoride-trifluoroethylene copolymers: 4. Poling effect on structure and phase transition , 1986 .

[21]  J F Scott,et al.  Self-patterning of arrays of ferroelectric capacitors: description by theory of substrate mediated strain interactions , 2003 .

[22]  E. Bellet-Amalric,et al.  Crystalline structures and phase transition of the ferroelectric P(VDF-TrFE) copolymers, a neutron diffraction study , 1998 .

[23]  Stephen Jesse,et al.  Switching spectroscopy piezoresponse force microscopy of ferroelectric materials , 2006 .

[24]  T. Ezquerra,et al.  Structure and properties of ferroelectric copolymers of poly(vinylidene fluoride) , 1993 .

[25]  Gerwin H. Gelinck,et al.  High-performance solution-processed polymer ferroelectric field-effect transistors , 2005 .

[26]  J. Melngailis,et al.  Scaling of ferroelectric and piezoelectric properties in Pt/SrBi2Ta2O9/Pt thin films , 1999 .

[27]  O. Auciello,et al.  Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.

[28]  Andrew G. Glen,et al.  APPL , 2001 .

[29]  Philippe Ghosez,et al.  Ferroelectricity and tetragonality in ultrathin PbTiO3 films. , 2004, Physical review letters.

[30]  K. Kimura,et al.  Orientation control of ferroelectric polymer molecules using contact-mode AFM , 2004 .

[31]  U. Gösele,et al.  Patterning and switching of nanosize ferroelectric memory cells , 1999 .

[32]  Ab initio study of ferroelectric domain walls in PbTiO 3 , 2001, cond-mat/0109257.

[33]  P. Blom,et al.  Low voltage switching of a spin cast ferroelectric polymer , 2004 .

[34]  S. Ducharme,et al.  Ferroelectric nanomesa formation from polymer Langmuir–Blodgett films , 2004 .

[35]  W. Mei,et al.  Simulations of ferroelectric polymer fi lm polarization: The r ole of dipole interactions , 2004 .

[36]  K. Kim,et al.  Molecular and Crystalline Microstructure of Ferroelectric Poly(vinylidene fluoride-co-trifluoroethylene) Ultrathin Films on Bare and Self-Assembled Monolayer-Modified Au Substrates , 2008 .

[37]  N. Setter,et al.  Ferroelectric polymer gate on AlGaN/GaN heterostructures , 2007 .

[38]  Haisheng Xu,et al.  Ferroelectric and switching behavior of poly(vinylidene fluoride-trifluoroethylene) copolymer ultrathin films with polypyrrole interface , 2007 .

[39]  Hongwei Qu,et al.  Surface structure of ultrathin copolymer films of ferroelectric vinylidene fluoride (70%) with trifluoroethylene (30%) on graphite , 2004 .

[40]  James F. Scott,et al.  Morphological Control of Polar Orientation in Single-Crystal Ferroelectric Nanowires , 2007 .

[41]  Stephen Ducharme,et al.  Two-dimensional ferroelectric films , 1998, Nature.