Density-functional tight-binding calculations of electronic states associated with grain boundaries in GaN

The electronic structure of the $(3\overline{7}40)\phantom{\rule{0.3em}{0ex}}\ensuremath{\Sigma}=37\phantom{\rule{0.3em}{0ex}}(\ensuremath{\theta}=9.3\ifmmode^\circ\else\textdegree\fi{})$, $(3\overline{5}20)\phantom{\rule{0.3em}{0ex}}\ensuremath{\Sigma}=19\phantom{\rule{0.3em}{0ex}}(\ensuremath{\theta}=13.4\ifmmode^\circ\else\textdegree\fi{})$, and $(1\overline{3}20)\phantom{\rule{0.3em}{0ex}}\ensuremath{\Sigma}=7\phantom{\rule{0.3em}{0ex}}(\ensuremath{\theta}=21.6\ifmmode^\circ\else\textdegree\fi{})$ tilt grain boundaries has been investigated by means of atomic computer simulation within the density-functional-based tight-binding approach. Among the three possible atomic configurations of these boundaries, namely, the 5/7-, the 4-, and the 8 dislocation core interfaces, it is shown that the 4 or 8 interface introduces deep states in the very center and the upper half of the band gap whereas the 5/7 interface possesses only states close to the conduction band.

[1]  Sven Öberg,et al.  Theory of Threading Edge and Screw Dislocations in GaN , 1997 .

[2]  P. Ruterana,et al.  Structural units and low-energy configurations of [0001] tilt grain boundaries in GaN , 2003 .

[3]  Toshio Ogino,et al.  Mechanism of Yellow Luminescence in GaN , 1980 .

[4]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[5]  T. Frauenheim,et al.  A theoretical investigation of dislocations in cubic and hexagonal gallium nitride , 2003 .

[6]  Joannopoulos,et al.  Structural complexity in grain boundaries with covalent bonding. , 1990, Physical review. B, Condensed matter.

[7]  M. Schlüter,et al.  Density-Functional Theory of the Energy Gap , 1983 .

[8]  P. Vennégués,et al.  Reduction mechanisms for defect densities in GaN using one- or two-step epitaxial lateral overgrowth methods , 2000 .

[9]  Olson,et al.  Optically detected magnetic resonance of GaN films grown by organometallic chemical-vapor deposition. , 1995, Physical review. B, Condensed matter.

[10]  David P. Bour,et al.  Spatial distribution of the luminescence in GaN thin films , 1996 .

[11]  Hadis Morkoç,et al.  Mosaic growth of GaN on (0001) sapphire: A high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries , 2000 .

[12]  Sándor Suhai,et al.  A Self‐Consistent Charge Density‐Functional Based Tight‐Binding Method for Predictive Materials Simulations in Physics, Chemistry and Biology , 2000 .

[13]  P. Nellist,et al.  Direct observation of the core structures of threading dislocations in GaN , 1998 .

[14]  Yamamoto,et al.  Theoretical study of grain boundaries in Si: Effects of structural disorder on the local electronic structure and the origin of band tails. , 1994, Physical review. B, Condensed matter.

[15]  M. Kohyama Tensile strength and fracture of a tilt grain boundary in cubic SiC : a first-principles study , 1999 .

[16]  A. Béré,et al.  Atomic structure of dislocation cores in GaN , 2002 .

[17]  John P. Perdew,et al.  Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities , 1983 .

[18]  L. Kronik,et al.  Yellow luminescence and related deep levels in unintentionally doped GaN films , 1999 .

[19]  Atomic Structure of [0001] Tilt Boundaries in GaN , 2001 .

[20]  G. Seifert,et al.  Structures, Energetics and Electronic Properties of Complex III—V Semiconductor Systems , 2000 .

[21]  T. Frauenheim,et al.  Influence of dislocations on electron energy-loss spectra in gallium nitride , 2002 .

[22]  H. Morkoç,et al.  Comprehensive characterization of hydride VPE grown GaN layers and templates , 2001 .

[23]  U. Sandler,et al.  Phase transitions in fiber materials , 2000 .

[24]  Kolomenskii,et al.  Nonlinear excitation of capillary waves by the Marangoni motion induced with a modulated laser beam. , 1995, Physical review. B, Condensed matter.