Acidianus, Sulfolobus and Metallosphaera surface layers: structure, composition and gene expression

The cell walls of Sulfolobales species consist of proteinaceous S‐layers assembled from two polypeptides, SlaA and SlaB. We isolated the large S‐layer protein of Acidianus ambivalens and both S‐layer subunits of Sulfolobus solfataricus and Metallosphaera sedula, respectively. The slaAB genes, lying adjacently in the chromosomes, are constitutively transcribed as bicistronic operons in A. ambivalens and S. solfataricus. A smaller slaA transcript appeared in Northern hybridizations of A. ambivalens RNA. PCRs experiments showed that 80–85% of the transcripts stop at an oligo‐T terminator downstream of slaA while 15–20% are read through to a second terminator downstream of slaB. The bicistronic operons including promoter and terminator regions are conserved in the Sulfolobales. While no SlaA homologue is found outside the Sulfolobales, SlaB is distantly similar to S‐layer proteins of other Crenarchaeota, e.g. the Staphylothermus marinus tetrabrachion. Molecular modelling suggests SlaBs to be composed of 2–3 consecutive beta sandwich domains, a coiled‐coil domain of 15–17 nm in length and a C‐terminal transmembrane helix. Electron microscopy shows crystalline protein arrays with triangular and hexagonal pores. We propose that the mushroom‐shaped ‘unit cells’ of the Sulfolobales' S‐layers consist of three SlaBs anchoring the complex in the membrane and six SlaAs forming the detergent‐resistant outer sacculus.

[1]  U. Sleytr,et al.  The structure and binding behavior of the bacterial cell surface layer protein SbsC. , 2008, Structure.

[2]  Michael J E Sternberg,et al.  Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre , 2008, Proteins.

[3]  P. Blum,et al.  The Genome Sequence of the Metal-Mobilizing, Extremely Thermoacidophilic Archaeon Metallosphaera sedula Provides Insights into Bioleaching-Associated Metabolism , 2007, Applied and Environmental Microbiology.

[4]  Deborah F. Kelly,et al.  7A projection map of the S-layer protein sbpA obtained with trehalose-embedded monolayer crystals. , 2007, Journal of structural biology.

[5]  H. Engelhardt,et al.  Are S-layers exoskeletons? The basic function of protein surface layers revisited. , 2007, Journal of structural biology.

[6]  H. Engelhardt Mechanism of osmoprotection by archaeal S-layers: a theoretical study. , 2007, Journal of structural biology.

[7]  J. Skolnick,et al.  Ab initio modeling of small proteins by iterative TASSER simulations , 2007, BMC Biology.

[8]  D. Pum,et al.  S-layers as a tool kit for nanobiotechnological applications. , 2007, FEMS microbiology letters.

[9]  C. Batt,et al.  Bionanofabrication of metallic and semiconductor nanoparticle arrays using S-layer protein lattices with different lateral spacings and geometries. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[10]  F. Lottspeich,et al.  Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. , 2003, Microbiology.

[11]  Junichi Takagi,et al.  Archaeal Surface Layer Proteins Contain β Propeller, PKD, and β Helix Domains and Are Related to Metazoan Cell Surface Proteins , 2002 .

[12]  Paul A. Bates,et al.  Domain Fishing: a first step in protein comparative modelling , 2002, Bioinform..

[13]  Robert E. Kingston,et al.  Preparation and Analysis of RNA , 2002 .

[14]  H. Huber,et al.  The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. , 2002, Archaea.

[15]  A. Driessen,et al.  Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus: a genomic survey , 2002, Archives of Microbiology.

[16]  Mark A. Ragan,et al.  The complete genome of the crenarchaeon Sulfolobus solfataricus P2 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Kessel,et al.  The cell surface glycoprotein layer of the extreme halophile Halobacterium salinarum and its relation to Haloferax volcanii: cryo-electron tomography of freeze-substituted cells and projection studies of negatively stained envelopes. , 2000, Journal of structural biology.

[18]  P. Bjorkman,et al.  Crystal structure of invasin: a bacterial integrin-binding protein. , 1999, Science.

[19]  T J Beveridge,et al.  Bacterial S-layers. , 1999, Trends in microbiology.

[20]  H. Engelhardt,et al.  Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions. , 1998, Journal of structural biology.

[21]  D. Grogan Organization and interactions of cell envelope proteins of the extreme thermoacidophile Sulfolobus acidocaldarius , 1996 .

[22]  W Baumeister,et al.  Hyperthermostable surface layer protein tetrabrachion from the archaebacterium Staphylothermus marinus: evidence for the presence of a right-handed coiled coil derived from the primary structure. , 1996, Journal of molecular biology.

[23]  A. Lupas,et al.  Tetrabrachion: a filamentous archaebacterial surface protein assembly of unusual structure and extreme stability. , 1995, Journal of molecular biology.

[24]  E. Beckmann,et al.  Cryo-electron microscopy of the surface protein of Sulfolobus shibatae , 1993 .

[25]  W. Baumeister,et al.  Structural features of archaebacterial cell envelopes , 1992, Journal of bioenergetics and biomembranes.

[26]  C. Mandl,et al.  Sequencing the termini of capped viral RNA by 5'-3' ligation and PCR. , 1991, BioTechniques.

[27]  W. Baumeister,et al.  The Three-dimensional Structure of the Surface Protein of Acidianus brierleyi Determined by Electron Crystallography , 1991 .

[28]  W. Baumeister,et al.  Image analysis and processing of an imperfect two‐dimensional crystal: the surface layer of the archaebacterium Sulfolobus acidocaldarius re‐investigated , 1991 .

[29]  W. Baumeister,et al.  Primary structure and glycosylation of the S-layer protein of Haloferax volcanii , 1990, Journal of bacteriology.

[30]  R. Huber,et al.  Three-Dimensional Structure of the Crystalline Protein Envelope Layer of the Hyperthermophilic Archaebacterium Pyrobaculum islandicum , 1990 .

[31]  D. Grogan,et al.  Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains , 1989, Journal of bacteriology.

[32]  A. Böck,et al.  Organization and nucleotide sequence of a transcriptional unit ofMethanococcus vannielii comprising genes for protein synthesis elongation factors and ribosomal proteins , 1989, Journal of Molecular Evolution.

[33]  K. Stetter,et al.  Metallosphaera sedula gen, and sp. nov. Represents a New Genus of Aerobic, Metal-Mobilizing, Thermoacidophilic Archaebacteria , 1989 .

[34]  D. Hartl,et al.  Genetic applications of an inverse polymerase chain reaction. , 1988, Genetics.

[35]  F. Lottspeich,et al.  A new siliconized-glass fiber as support for protein-chemical analysis of electroblotted proteins. , 1988, European journal of biochemistry.

[36]  W. Baumeister,et al.  Three‐dimensional structure of the regular surface glycoprotein layer of Halobacterium volcanii from the Dead Sea , 1988, The EMBO journal.

[37]  W. Zillig,et al.  Transcription termination in the archaebacterium Sulfolobus: signal structures and linkage to transcription initiation. , 1988, Nucleic acids research.

[38]  G. Schmidt,et al.  Rapid, reversible staining of northern blots prior to hybridization. , 1988, BioTechniques.

[39]  W. Baumeister,et al.  Surface structure variants in different species of Sulfolobus , 1987 .

[40]  P. Chomczyński,et al.  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. , 1987, Analytical biochemistry.

[41]  A. Böck,et al.  Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur , 1986 .

[42]  D. Pum,et al.  Ultrastructure of the cell envelope of the archaebacteria Thermoproteus tenax and Thermoproteus neutrophilus , 1986, Journal of bacteriology.

[43]  L. Amos,et al.  Three-dimensional arrangement of the cell wall protein of Sulfolobus acidocaldarius. , 1983, Journal of molecular biology.

[44]  Kenneth A. Taylor,et al.  Structure of the S-layer of Sulfolobus acidocaldarius , 1982, Nature.

[45]  W. O. Saxton,et al.  The correlation averaging of a regularly arranged bacterial cell envelope protein , 1982, Journal of microscopy.

[46]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[47]  B. Lugtenberg,et al.  Electrophoretic resolution of the ‘major outer membrane protein’ of Escherichia coli K12 into four bands , 1975, FEBS letters.

[48]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[49]  H. König,et al.  Proteinaceous Surface Layers of Archaea: Ultrastructure and Biochemistry , 2007 .

[50]  Yang Zhang,et al.  Template‐based modeling and free modeling by I‐TASSER in CASP7 , 2007, Proteins.

[51]  T. D. Brock,et al.  Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature , 2004, Archiv für Mikrobiologie.

[52]  Reiner Hegerl,et al.  Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography. , 2003, Journal of structural biology.

[53]  T. Debaerdemaeker,et al.  Primary structure of selected archaeal mesophilic and extremely thermophilic outer surface layer proteins. , 2002, Systematic and applied microbiology.

[54]  A. Joachimiak,et al.  Archaeal surface layer proteins contain beta propeller, PKD, and beta helix domains and are related to metazoan cell surface proteins. , 2002, Structure.

[55]  M J Sternberg,et al.  Enhancement of protein modeling by human intervention in applying the automatic programs 3D‐JIGSAW and 3D‐PSSM , 2001, Proteins.

[56]  Hegerl,et al.  The EM Program Package: A Platform for Image Processing in Biological Electron Microscopy , 1996, Journal of structural biology.

[57]  Saxton Semper: Distortion Compensation, Selective Averaging, 3-D Reconstruction, and Transfer Function Correction in a Highly Programmable System , 1996, Journal of structural biology.

[58]  W. Baumeister,et al.  Principles of organization in eubacterial and archaebacterial surface proteins. , 1989, Canadian journal of microbiology.

[59]  H. Engelhardt Correlation averaging and 3-D reconstruction of 2-D crystalline membranes and macromolecules , 1988 .

[60]  W. Baumeister,et al.  Three-dimensional structure of the surface protein of Sulfolobus solfataricus , 1987 .

[61]  C. Chuong,et al.  Article type Software , 2007 .