Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems

Abstract Laser diagnostic techniques play a large and growing role in combustion research and development. Here we highlight three areas where quantitative sensing based on laser absorption has had strong influence: chemical kinetics, propulsion, and practical energy systems. In the area of chemical kinetics, measurements in shock tubes of high-temperature reaction rate coefficients using species-specific laser absorption techniques have provided new and accurate answers to questions about combustion chemical processes. In the area of propulsion, wide-bandwidth measurements of flow temperatures, species concentrations, and velocity have provided engine designers with the necessary information to improve operation and performance. In the area of practical energy systems, real-time measurements of combustor operating conditions and emissions have enabled needed incremental improvements in large power plants and improved safety of operation. Yet, there is still more to be done, and opportunities for new applications will grow as laser sensors evolve. This review seeks to provide an overview of the current power and future potential of these modern diagnostic tools.

[1]  Ronald K. Hanson,et al.  Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: An Overview , 2001 .

[2]  K. S. Shin,et al.  Shock tube study of the rate coefficient of H + O2 → OH + O , 1994 .

[3]  Ronald K. Hanson,et al.  Tunable Diode Laser Absorption Measurements of Nitric Oxide in Combustion Gases , 1983 .

[4]  Ronald K. Hanson,et al.  Active control of lean blowout in a swirl-stabilized combustor using a tunable diode laser , 2007 .

[5]  Ann P. Dowling,et al.  FEEDBACK CONTROL OF COMBUSTION OSCILLATIONS , 2005 .

[6]  Volker Ebert,et al.  Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions , 2002 .

[7]  Ronald K. Hanson,et al.  Development of an aerosol shock tube for kinetic studies of low-vapor-pressure fuels , 2007 .

[8]  Ronald K. Hanson,et al.  Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm , 2009 .

[9]  Arash Ateshkadi,et al.  Lean blowout model for a spray-fired swirl-stabilized combustor , 2000 .

[10]  Christoph Hassa,et al.  OPTICAL MEASUREMENTS OF THE REACTING TWO-PHASE FLOW IN A REALISTIC GAS TURBINE COMBUSTOR AT ELEVATED PRESSURES , 2006 .

[11]  Takaya Iseki,et al.  A portable remote methane sensor using a tunable diode laser , 2000 .

[12]  Anthony M. Dean,et al.  Predictions of pressure and temperature effects upon radical addition and recombination reactions , 1985 .

[13]  Ronald K. Hanson,et al.  High-pressure methane oxidation behind reflected shock waves , 1996 .

[14]  Ronald K. Hanson,et al.  A diode-laser absorption sensor system for combustion emission measurements , 1998 .

[15]  Takao Tsuboi,et al.  UV Absorption Study on the Reaction of Methyl Radicals behind Shock Waves , 1978 .

[16]  Genny A. Pang,et al.  The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves , 2009 .

[17]  R. Hanson,et al.  Rapid-tuning frequency-doubled ring dye laser for high resolution absorption spectroscopy in shock-heated gases. , 1984, Applied optics.

[18]  Ronald K. Hanson,et al.  Multi-species time-history measurements during n-heptane oxidation behind reflected shock waves , 2010 .

[19]  Ronald K. Hanson,et al.  Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures , 2004 .

[20]  Leslie L. Sloss,et al.  Nitrogen Oxides Control Technology Fact Book , 1993 .

[21]  Edwin Corporan,et al.  Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames. , 2005, Applied optics.

[22]  C. Westbrook,et al.  A Comprehensive Modeling Study of n-Heptane Oxidation , 1998 .

[23]  S. Davis,et al.  Laminar flame speeds and oxidation kinetics of iso-octane-air and n-heptane-air flames , 1998 .

[24]  John H. S. Lee,et al.  Dynamic Parameters of Gaseous Detonations , 1984 .

[25]  R. Hanson,et al.  Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence. , 1997, Optics letters.

[26]  Ronald K. Hanson,et al.  A simple reactive gasdynamic model for the computation of gas temperature and species concentrations behind reflected shock waves , 2008 .

[27]  Ronald K. Hanson,et al.  Diode laser-based detection of combustor instabilities with application to a scramjet engine , 2009 .

[28]  Ronald K. Hanson,et al.  Diode Laser Sensor for Velocity Measurements in Hypervelocity Flows , 1999 .

[29]  Ephraim Gutmark,et al.  Compact incinerator afterburner concept based on vortex combustion , 1996 .

[30]  Ronald K. Hanson,et al.  In situ absorption sensor for NO in combustion gases with a 5.2 μm quantum-cascade laser , 2011 .

[31]  David M. Wardlaw,et al.  Study of the recombination reaction methyl + methyl .fwdarw. ethane. 2. Theory , 1988 .

[32]  Ronald K. Hanson,et al.  Pulse Detonation Engine Characterization and Control Using Tunable Diode-Laser Sensors , 2003 .

[33]  A. Dreizler,et al.  Time-Resolved Conditional Flow Field Statistics in Extinguishing Turbulent Opposed Jet Flames Using Simultaneous Highspeed PIV/OH-PLIF , 2009 .

[34]  Volker Sick,et al.  Sustained simultaneous high-speed imaging of scalar and velocity fields using a single laser , 2006 .

[35]  C. Westbrook,et al.  A comprehensive modeling study of hydrogen oxidation , 2004 .

[36]  Sébastien Candel,et al.  Planar laser-induced fluorescence of OH in high-pressure cryogenic LOx/GH2 jet flames , 2006 .

[37]  R. Hanson,et al.  Laser-absorption mass flux sensor for high-speed airflows. , 1991, Optics letters.

[38]  R. Hanson,et al.  Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. , 2009, Applied optics.

[39]  Michael E. Webber,et al.  Diode-Laser Sensors for Real-Time Control of Pulsed Combustion Systems , 1999 .

[40]  Lawrence B. Harding,et al.  A Direct Transition State Theory Based Study of Methyl Radical Recombination Kinetics , 1999 .

[41]  Gregory P. Smith,et al.  Evidence of NCN as a flame intermediate for prompt NO , 2003 .

[42]  K. Uehara,et al.  Remote detection of methane with a 1.66-microm diode laser. , 1992, Applied optics.

[43]  Ronald K. Hanson,et al.  Development of a fast temperature sensor for combustion gases using a single tunable diode laser , 2005 .

[44]  R. Hanson,et al.  Kinetics modeling of shock-induced ignition in low-dilution CH4/O2 mixtures at high pressures and intermediate temperatures , 1999 .

[45]  Volker Ebert,et al.  Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers. , 2003, Applied optics.

[46]  Ronald K. Hanson,et al.  A new shock tube study of the H + O2 → OH + O reaction rate using tunable diode laser absorption of H2O near 2.5 μm , 2011 .

[47]  J. A. Silver,et al.  Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser. , 1992, Applied optics.

[48]  D M Sonnenfroh,et al.  Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser. , 1997, Applied optics.

[49]  Ronald K. Hanson,et al.  Jet fuel ignition delay times: Shock tube experiments over wide conditions and surrogate model predictions , 2008 .

[50]  Thomas Dreier,et al.  Imaging measurements of atomic iron concentration with laser-induced fluorescence in a nanoparticle synthesis flame reactor , 2008 .

[51]  C. Carter,et al.  Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames , 2009 .

[52]  Yei-Chin Chao,et al.  An experimental investigation of the blowout process of a jet flame , 2000 .

[53]  J. Burie,et al.  Continuous-wave mid-infrared laser sources based on difference frequency generation , 2007 .

[54]  Ronald K. Hanson,et al.  Shock-tube study of pressure broadening of the A2∑+ - X2Π (0,0) band of OH by Ar and N2 , 1987 .

[55]  A. Lefebvre Gas Turbine Combustion , 1983 .

[56]  Ronald K. Hanson,et al.  REVISED VALUES FOR THE RATE COEFFICIENTS OF ETHANE AND METHANE DECOMPOSITION , 1995 .

[57]  L. Moskaleva,et al.  The spin-conserved reaction CH+N2→H+NCN: A major pathway to prompt no studied by quantum/statistical theory calculations and kinetic modeling of rate constant , 2000 .

[58]  Ronald K. Hanson,et al.  Shock tube ignition delay time measurements in propane/O2/argon mixtures at near-constant-volume conditions , 2011 .

[59]  Ronald K. Hanson,et al.  Diode-Laser Sensor for Air-Mass Flux 1: Design and Wind-Tunnel Validation , 2007 .

[60]  J C McDaniel,et al.  Quantitative visualization of combustion species in a plane. , 1982, Applied optics.

[61]  P. Roth,et al.  Messungen zur Hochtemperaturpyrolyse von Äthan , 1979 .

[62]  P. Frank,et al.  High temperature reaction rate for H+O2=OH+O and OH+H2=H2O+H , 1985 .

[63]  Normand M. Laurendeau,et al.  Quantitative measurements of nitric oxide in high-pressure (2-5 atm), swirl-stabilized spray flames via laser-induced fluorescence , 2000 .

[64]  C. W. Larson,et al.  Pressure and temperature dependence of reactions proceeding via a bound complex. 2. Application to 2CH3 → C2H5 + H , 1989 .

[65]  Ronald K. Hanson,et al.  n-Dodecane oxidation at high-pressures: Measurements of ignition delay times and OH concentration time-histories , 2009 .

[66]  Volker Ebert,et al.  In-situ gas analysis with infrared lasers , 1993 .

[67]  B. D. Green,et al.  Handheld, battery-powered near-IR TDL sensor for stand-off detection of gas and vapor plumes , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[68]  Yedidia Neumeier,et al.  Experimental demonstration of active control of combustion instabilities using real-time modes observation and secondary fuel injection , 1996 .

[69]  Ronald K. Hanson,et al.  Shock tube/laser absorption measurements of ethylene time-histories during ethylene and n-heptane pyrolysis , 2011 .

[70]  Wolfgang Meier,et al.  Phase-resolved laser Raman scattering and laser Doppler velocimetry applied to periodic instabilities in a gas turbine model combustor , 2005 .

[71]  Naibo Jiang,et al.  Ultrahigh-frame-rate nitric oxide planar laser-induced fluorescence imaging. , 2008, Optics letters.

[72]  D R Crosley,et al.  Two-dimensional imaging of OH laser-induced fluorescence in a flame. , 1982, Optics letters.

[73]  J. Kiefer,et al.  The very‐high‐temperature pyrolysis of ethane: Evidence against high rates for dissociative recombination reactions of methyl radicals , 1984 .

[74]  Volker Ebert,et al.  Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers , 2005 .

[75]  Stephen J. Klippenstein,et al.  Dissociation, relaxation, and incubation in the high-temperature pyrolysis of ethane, and a successful RRKM modeling , 2005 .

[76]  Ronald K. Hanson,et al.  Contact surface tailoring condition for shock tubes with different driver and driven section diameters , 2009 .

[77]  K. Kohse-Höinghaus Laser techniques for the quantitative detection of reactive intermediates in combustion systems , 1991 .

[78]  Juergen Wolfrum,et al.  Simultaneous laser-based in situ detection of oxygen and water in a waste incinerator for active combustion control purposes , 1998 .

[79]  Marcus Aldén,et al.  Combustion at the focus: laser diagnostics and control , 2005 .

[80]  J. A. Silver,et al.  Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods. , 1992, Applied optics.

[81]  Robert P Lucht,et al.  Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor. , 2005, Applied optics.

[82]  Ronald K. Hanson,et al.  Shock tube study of the reaction hydrogen atom + oxygen .fwdarw. hydroxyl + oxygen atom using hydroxyl laser absorption , 1990 .

[83]  Ronald K. Hanson,et al.  OH and C2H4 species time-histories during hexadecane and diesel ignition behind reflected shock waves , 2011 .

[84]  Ronald K. Hanson,et al.  Sensing and Control of Combustion Instabilities in Swirl-Stabilized Combustors Using Diode-Laser Absorption , 2006 .

[85]  Sébastien Candel,et al.  Flame stabilization in high pressure LOx/GH2 and GCH4 combustion , 2007 .

[86]  Kailas Kailasanath,et al.  Performance estimates of pulsed detonation engines , 2000 .

[87]  R. Hanson,et al.  Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube , 2007 .

[88]  S. Ryu,et al.  Shock Tube and Modeling Study of the H + O2 = OH + O Reaction over a Wide Range of Composition, Pressure, and Temperature , 1995 .

[89]  August Beer,et al.  Einleitung in die Elektrostatik, die Lehre vom Magnetismus und die Elektrodynamik , 1865 .

[90]  Bradley T. Zigler,et al.  A rapid compression facility study of OH time histories during iso-octane ignition , 2006 .

[91]  J. Troe Predictive possibilities of unimolecular rate theory , 1979 .

[92]  Ronald K. Hanson,et al.  Collisional broadening of the A2Σ+←X2Π(0,0) band of OH by H2O and CO2 in atmospheric-pressure flames , 1989 .

[93]  C. Kaminski,et al.  High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame , 1999 .

[94]  Ronald K. Hanson,et al.  Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions , 1999 .

[95]  KoHse-HoingHaus Applied Combustion Diagnostics , 2002 .

[96]  M. Fraser,et al.  Application of quantum cascade lasers to trace gas analysis , 2008 .

[97]  R. Hanson,et al.  Shock tube study of the reaction of CH with N2: overall rate and branching ratio. , 2007, The journal of physical chemistry. A.

[98]  Jürgen Wolfrum,et al.  Lasers in combustion: From basic theory to practical devices , 1998 .

[99]  Jay Jeffries,et al.  Wavelength-agile diode-laser sensing strategies for monitoring gas properties in optically harsh flows: application in cesium-seeded pulse detonation. , 2002, Optics express.

[100]  G. C. Quartucy,et al.  Implementing NOx control: Research to application , 1997 .

[101]  Ronald K. Hanson,et al.  High temperature reaction rate coefficients derived from N-atom ARAS measurements and excimer photolysis of NO , 1990 .

[102]  Naibo Jiang,et al.  Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics. , 2008, Applied optics.

[103]  Ronald K. Hanson,et al.  Shock tube determination of the overall rate of NH2 + NO → products in the thermal De‐NOx temperature window , 2001 .

[104]  P L Varghese,et al.  Collisional narrowing effects on spectral line shapes measured at high resolution. , 1984, Applied optics.

[105]  Ronald K. Hanson,et al.  Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements , 2009 .

[106]  Lin Ma,et al.  Monitoring and control of a pulse detonation engine using a diode-laser fuel concentration and temperature sensor , 2002 .

[107]  Ronald K. Hanson,et al.  Application of an aerosol shock tube to the measurement of diesel ignition delay times , 2009 .

[108]  Ronald K. Hanson,et al.  Tunable diode laser absorption temperature measurements in a fluidized-bed gasifier , 2009 .

[109]  Ronald K. Hanson,et al.  Fuel Distribution Effects on Pulse Detonation Engine Operation and Performance , 2006 .

[110]  Ronald K. Hanson,et al.  REAL-TIME ADAPTIVE COMBUSTION CONTROL USING DIODE-LASER ABSORPTION SENSORS , 1998 .

[111]  Ronald K. Hanson,et al.  Evaluation of pulse detonation engine modeling using laser-based temperature and OH concentration measurements , 2005 .

[112]  Ronald K. Hanson,et al.  Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O at room temperature , 1980 .

[113]  M. J. Scott,et al.  Premixed turbulent flame instability and NO formation in a lean-burn swirl burner , 1998 .

[114]  P. Kaspersen,et al.  Gas monitoring in the process industry using diode laser spectroscopy , 1998 .

[115]  R. Hanson,et al.  Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow. , 1993, Applied optics.

[116]  A. Hertzberg,et al.  The Tailored-Interface Hypersonic Shock Tunnel , 1959 .

[117]  D. Siebers,et al.  Rapid reduction of nitrogen oxides in exhaust gas streams , 1986, Nature.

[118]  R. Hanson,et al.  Ignition Delay Times of Ram Accelerator CH/O/Diluent Mixtures , 1999 .

[119]  R. Hanson,et al.  Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements. , 1994, Optics letters.

[120]  Daniel T. Cassidy,et al.  Atmospheric pressure monitoring of trace gases using tunable diode lasers. , 1982, Applied optics.

[121]  A. G. Gaydon,et al.  The shock tube in high-temperature chemical physics , 1963 .

[122]  Ronald K. Hanson,et al.  CW laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows , 2010 .

[123]  Ronald K. Hanson,et al.  Two-wavelength mid-IR diagnostic for temperature and n-dodecane concentration in an aerosol shock tube , 2008 .

[124]  M. Allen,et al.  Diode laser absorption sensors for gas-dynamic and combustion flows. , 1998, Measurement science & technology.

[125]  Ronald K. Hanson,et al.  Shock Tube Study of Methylcyclohexane Ignition over a Wide Range of Pressure and Temperature , 2009 .

[126]  Ronald K. Hanson,et al.  Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines , 2000 .

[127]  Werner Hentschel,et al.  Optical diagnostics for combustion process development of direct-injection gasoline engines , 2000 .

[128]  Jürgen Wolfrum,et al.  In situ measurement of ammonia concentration in industrial combustion systems , 1991 .

[129]  W. Kessler,et al.  Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets. , 1996, Applied optics.

[130]  A. Eckbreth Laser Diagnostics for Combustion Temperature and Species , 1988 .

[131]  D. Labrie,et al.  Second-harmonic detection with tunable diode lasers — Comparison of experiment and theory , 1981 .

[132]  Ronald K. Hanson,et al.  A shock tube study of the decomposition of no in the presence of NH3 , 1981 .

[133]  Campbell D. Carter,et al.  Planar laser-induced fluorescence imaging of OH in a supersonic combustor fueled with ethylene and methane , 2009 .

[134]  Christian Oliver Paschereit,et al.  Control of thermoacoustic instabilities and emissions in an industrial-type gas-turbine combustor , 1998 .

[135]  A. Kosterev,et al.  Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems , 2005 .

[136]  Manfred Aigner,et al.  Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-Argon jet diffusion flame at 1.5 kHz repetition rate , 2009 .

[137]  Daniel C. Haworth,et al.  Advanced gasoline engine development using optical diagnostics and numerical modeling , 2007 .

[138]  Campbell D. Carter,et al.  Oh planar laser-induced fluoroescence imaging in a hydrocarbon-fueled scramjet combustor , 2000 .

[139]  Ronald K. Hanson,et al.  Absorption of CO laser radiation by NO , 1976 .

[140]  Michael J. Pilling,et al.  Study of the recombination reaction methyl + methyl .fwdarw. ethane. 1. Experiment , 1988 .

[141]  A. Stanton,et al.  Measurement of nitric oxide with an antimonide diode laser. , 1997, Applied optics.

[142]  W. T. Rawlins,et al.  Fluorescence imaging of OH and NO in a model supersonic combustor , 1993 .

[143]  David D. Nelson,et al.  Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm-1 , 2006 .

[144]  Ronald K. Hanson,et al.  Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows. , 1993, Applied optics.

[145]  Ronald K. Hanson,et al.  CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm , 2008 .

[146]  Ronald K. Hanson,et al.  A shock tube study of reactions of CN with HCN, OH, and H2 using CN and OH laser absorption , 1996 .

[147]  Ronald K. Hanson,et al.  High-temperature ethane and propane decomposition , 2005 .

[148]  Ronald K. Hanson,et al.  Two-wavelength mid-IR absorption diagnostic for simultaneous measurement of temperature and hydrocarbon fuel concentration , 2009 .

[149]  Hejie Li,et al.  Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. , 2006, Applied optics.

[150]  Juergen Wolfrum,et al.  SIMULTANEOUS DIODE-LASER-BASED IN SITU DETECTION OF MULTIPLE SPECIES AND TEMPERATURE IN A GAS-FIRED POWER PLANT , 2000 .

[151]  Garry L. Schott,et al.  Further studies of exponential branching rates in reflected-shock heated, nonstoichiometric H2COO2 systems , 1973 .

[152]  Christof Schulz,et al.  Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A-X excitation schemes. , 2003, Applied optics.

[153]  Ronald K. Hanson,et al.  Quantitative NO-LIF imaging in high-pressure flames , 2002 .

[154]  K. A. Bhaskaran,et al.  The shock tube as wave reactor for kinetic studies and material systems , 2002 .

[155]  Ronald K. Hanson,et al.  Diode-laser sensor for air-mass flux 2 : Nonuniform flow modeling and aeroengine tests , 2007 .

[156]  Ronald K. Hanson,et al.  Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures , 2005 .

[157]  Masao Suga,et al.  Thermal decomposition of ethane in shock waves , 1985 .

[158]  Ronald K. Hanson,et al.  UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame , 2004 .

[159]  Ronald K. Hanson,et al.  Methyl concentration time-histories during iso-octane and n-heptane oxidation and pyrolysis , 2007 .