The Copula Information Criteria

type="main" xml:id="sjos12042-abs-0001"> We derive two types of Akaike information criterion (AIC)-like model-selection formulae for the semiparametric pseudo-maximum likelihood procedure. We first adapt the arguments leading to the original AIC formula, related to empirical estimation of a certain Kullback–Leibler information distance. This gives a significantly different formula compared with the AIC, which we name the copula information criterion. However, we show that such a model-selection procedure cannot exist for copula models with densities that grow very fast near the edge of the unit cube. This problem affects most popular copula models. We then derive what we call the cross-validation copula information criterion, which exists under weak conditions and is a first-order approximation to exact cross validation. This formula is very similar to the standard AIC formula but has slightly different motivation. A brief illustration with real data is given.

[1]  Masayuki Uchida,et al.  Information Criteria for Small Diffusions via the Theory of Malliavin–Watanabe , 2004 .

[2]  M. Wegkamp,et al.  Weak Convergence of Empirical Copula Processes , 2004 .

[3]  Yanqin Fan,et al.  Pseudo‐likelihood ratio tests for semiparametric multivariate copula model selection , 2005 .

[4]  Enjoy the Joy of Copulas , 2006 .

[5]  Tuo-Yeong Lee A multidimensional integration by parts formula for the Henstock-Kurzweil integral , 2008 .

[6]  The Copula Information Criterion and Its Implications for the Maximum Pseudo-Likelihood Estimator , 2010 .

[7]  P. Gaenssler,et al.  Empirical Processes: A Survey of Results for Independent and Identically Distributed Random Variables , 1979 .

[8]  J. Segers Asymptotics of empirical copula processes under non-restrictive smoothness assumptions , 2010, 1012.2133.

[9]  Peter J. Bickel,et al.  Convergence Criteria for Multiparameter Stochastic Processes and Some Applications , 1971 .

[10]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[11]  Nils Lid Hjort,et al.  Model Selection and Model Averaging: Contents , 2008 .

[12]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[13]  Catalina Bolancé,et al.  Estimación del riesgo mediante el ajuste de cópulas , 2015 .

[14]  Valentyn Panchenko,et al.  Goodness-of-fit test for copulas , 2005 .

[15]  H. Joe Multivariate models and dependence concepts , 1998 .

[16]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[17]  R. Pyke,et al.  Weak Convergence of a Two-sample Empirical Process and a New Approach to Chernoff-Savage Theorems , 1968 .

[18]  S. C. Zaremba Some applications of multidimensional integration by parts , 1968 .

[19]  M. Artís,et al.  Quantifying the risk using copulae with nonparametric marginals , 2014 .

[20]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[21]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[22]  W. R. van Zwet,et al.  Asymptotic Normality of Nonparametric Tests for Independence , 1972 .

[23]  Nils Lid Hjort,et al.  Model Selection and Model Averaging , 2001 .

[24]  Johan Segers,et al.  Weak convergence of empirical copula processes under nonrestrictive smoothness assumptions , 2010 .

[25]  David R. Anderson,et al.  Model Selection and Multimodel Inference , 2003 .

[26]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[27]  A. Owen Multidimensional variation for quasi-Monte Carlo , 2004 .

[28]  Bruno Rémillard,et al.  Goodness‐of‐fit Procedures for Copula Models Based on the Probability Integral Transformation , 2006 .

[29]  H. Tsukahara,et al.  Semiparametric estimation in copula models , 2005 .