Microglia damage precedes major myelin breakdown in X‐linked adrenoleukodystrophy and metachromatic leukodystrophy

X‐linked adrenoleukodystrophy (X‐ALD) and metachromatic leukodystrophy (MLD) are two relatively common examples of hereditary demyelinating diseases caused by a dysfunction of peroxisomal or lysosomal lipid degradation. In both conditions, accumulation of nondegraded lipids leads to the destruction of cerebral white matter. Because of their high lipid content, oligodendrocytes are considered key to the pathophysiology of these leukodystrophies. However, the response to allogeneic stem cell transplantation points to the relevance of cells related to the hematopoietic lineage. In the present study, we aimed to better characterize the pathogenetic role of microglia in the above‐mentioned diseases. Applying recently established microglia markers to human autopsy cases of X‐ALD and MLD we were able to delineate distinct lesion stages in evolving demyelinating lesions. The immune‐phenotype of microglia was altered already early in lesion evolution, and microglia loss preceded full‐blown myelin degeneration both in X‐ALD and MLD. DNA fragmentation indicating phagocyte death was observed in areas showing microglia loss. The morphology and dynamics of phagocyte decay differed between the diseases and between lesion stages, hinting at distinct pathways of programmed cell death. In summary, the present study shows an early and severe damage to microglia in the pathogenesis of X‐ALD and MLD. This hints at a central pathophysiologic role of these cells in the diseases and provides evidence for an ongoing transfer of toxic substrates primarily enriched in myelinating cells to microglia.

[1]  F. Ginhoux,et al.  Microglia heterogeneity along a spatio–temporal axis: More questions than answers , 2018, Glia.

[2]  F. C. Bennett,et al.  A Combination of Ontogeny and CNS Environment Establishes Microglial Identity , 2018, Neuron.

[3]  M. Bugiani,et al.  Heat shock protein expression in cerebral X‐linked adrenoleukodystrophy reveals astrocyte stress prior to myelin loss , 2018, Neuropathology and applied neurobiology.

[4]  N. Popitsch,et al.  Impaired plasticity of macrophages in X-linked adrenoleukodystrophy , 2018, Brain : a journal of neurology.

[5]  M. Esteller,et al.  Epigenomic signature of adrenoleukodystrophy predicts compromised oligodendrocyte differentiation , 2018, Brain pathology.

[6]  Bo Peng,et al.  Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion , 2018, Nature Neuroscience.

[7]  J. Grutzendler,et al.  Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain , 2018, Nature Neuroscience.

[8]  W. Möbius,et al.  Defective cholesterol clearance limits remyelination in the aged central nervous system , 2018, Science.

[9]  H. Weiner,et al.  Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts , 2017, Brain pathology.

[10]  F. Eichler,et al.  Microglial dysfunction as a key pathological change in adrenomyeloneuropathy , 2017, Annals of neurology.

[11]  David A. Williams,et al.  Hematopoietic Stem‐Cell Gene Therapy for Cerebral Adrenoleukodystrophy , 2017, The New England journal of medicine.

[12]  Tuan Leng Tay,et al.  A new fate mapping system reveals context-dependent random or clonal expansion of microglia , 2017, Nature Neuroscience.

[13]  Simon Hametner,et al.  Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis , 2017, Brain : a journal of neurology.

[14]  F. C. Bennett,et al.  Diverse Requirements for Microglial Survival, Specification, and Function Revealed by Defined-Medium Cultures , 2017, Neuron.

[15]  A. Linkermann,et al.  The in vivo evidence for regulated necrosis , 2017, Immunological reviews.

[16]  A. Mildner,et al.  P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases , 2017, Glia.

[17]  Hoon-Chul Kang,et al.  25-hydroxycholesterol contributes to cerebral inflammation of X-linked adrenoleukodystrophy through activation of the NLRP3 inflammasome , 2016, Nature Communications.

[18]  I. Amit,et al.  Microglia development follows a stepwise program to regulate brain homeostasis , 2016, Science.

[19]  Steffen Jung,et al.  Age-related myelin degradation burdens the clearance function of microglia during aging , 2016, Nature Neuroscience.

[20]  Tuan Leng Tay,et al.  The force awakens: insights into the origin and formation of microglia , 2016, Current Opinion in Neurobiology.

[21]  J. Keane,et al.  Lysosomal Disorders Drive Susceptibility to Tuberculosis by Compromising Macrophage Migration , 2016, Cell.

[22]  F. C. Bennett,et al.  New tools for studying microglia in the mouse and human CNS , 2016, Proceedings of the National Academy of Sciences.

[23]  W. Talbot,et al.  The Rag-Ragulator Complex Regulates Lysosome Function and Phagocytic Flux in Microglia. , 2016, Cell reports.

[24]  J. Berger,et al.  Peroxisomes in brain development and function , 2015, Biochimica et biophysica acta.

[25]  M. Prinz,et al.  Do not judge a cell by its cover—diversity of CNS resident, adjoining and infiltrating myeloid cells in inflammation , 2015, Seminars in Immunopathology.

[26]  Frauke Zipp,et al.  Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System. , 2015, Immunity.

[27]  F. Eichler,et al.  The genetic landscape of X-linked adrenoleukodystrophy: inheritance, mutations, modifier genes, and diagnosis. , 2015, The application of clinical genetics.

[28]  F. Geissmann,et al.  Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors , 2014, Nature.

[29]  Haoxing Xu,et al.  Lysosomal physiology. , 2015, Annual review of physiology.

[30]  M. Engelen,et al.  Frequent occurrence of cerebral demyelination in adrenomyeloneuropathy , 2014, Neurology.

[31]  Klaus-Armin Nave,et al.  Myelination of the nervous system: mechanisms and functions. , 2014, Annual review of cell and developmental biology.

[32]  I. Bechmann,et al.  Microglial pathology , 2014, Acta neuropathologica communications.

[33]  Marco Prinz,et al.  Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease , 2014, Nature Reviews Neuroscience.

[34]  Brian L. West,et al.  Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain , 2014, Neuron.

[35]  S. Gordon,et al.  The M1 and M2 paradigm of macrophage activation: time for reassessment , 2014, F1000prime reports.

[36]  S. Amor,et al.  Oligodendrocyte‐microglia cross‐talk in the central nervous system , 2014, Immunology.

[37]  H. Stockinger,et al.  X-linked adrenoleukodystrophy: very long-chain fatty acid metabolism is severely impaired in monocytes but not in lymphocytes , 2013, Human molecular genetics.

[38]  S. Gygi,et al.  Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia , 2013, Nature Neuroscience.

[39]  F. Eichler,et al.  Hypoperfusion predicts lesion progression in cerebral X-linked adrenoleukodystrophy. , 2012, Brain : a journal of neurology.

[40]  K. Moore,et al.  Macrophages in the Pathogenesis of Atherosclerosis , 2011, Cell.

[41]  P. Aubourg,et al.  Current and Future Pharmacological Treatment Strategies in X‐Linked Adrenoleukodystrophy , 2010, Brain pathology.

[42]  M. Sofroniew,et al.  Astrocytes: biology and pathology , 2009, Acta Neuropathologica.

[43]  F. Eichler,et al.  Metachromatic Leukodystrophy: A Scoring System for Brain MR Imaging Observations , 2009, American Journal of Neuroradiology.

[44]  W. Streit,et al.  Life and Death of Microglia , 2009, Journal of Neuroimmune Pharmacology.

[45]  A. Moser,et al.  Is microglial apoptosis an early pathogenic change in cerebral X‐linked adrenoleukodystrophy? , 2008, Annals of neurology.

[46]  M. Eckhardt The Role and Metabolism of Sulfatide in the Nervous System , 2008, Molecular Neurobiology.

[47]  V. Gieselmann Metachromatic leukodystrophy: genetics, pathogenesis and therapeutic options , 2008, Acta paediatrica.

[48]  H. Kettenmann,et al.  Microglia: active sensor and versatile effector cells in the normal and pathologic brain , 2007, Nature Neuroscience.

[49]  H. Moser,et al.  Survival analysis of haematopoietic cell transplantation for childhood cerebral X-linked adrenoleukodystrophy: a comparison study , 2007, The Lancet Neurology.

[50]  S. Renowden,et al.  Magnetic Resonance of Myelination and Myelin Disorders , 2006, Journal of Neurology.

[51]  R. Lüllmann-Rauch History and Morphology of the Lysosome , 2005 .

[52]  R. Lüllmann-Rauch,et al.  Lysosomal sulfatide storage in the brain of arylsulfatase A-deficient mice: cellular alterations and topographic distribution , 2004, Acta Neuropathologica.

[53]  H. Moser,et al.  Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. , 2004, Blood.

[54]  J. Peiffer Über die metachromatischen Leukodystrophien (Typ Scholz) , 2004, Archiv für Psychiatrie und Nervenkrankheiten.

[55]  Kazuhide Inoue,et al.  Selective expression of Gi/o‐coupled ATP receptor P2Y12 in microglia in rat brain , 2003, Glia.

[56]  H. Moser,et al.  Analysis of MRI patterns aids prediction of progression in X-linked adrenoleukodystrophy , 2003, Neurology.

[57]  H. Moser,et al.  X-linked adrenoleukodystrophy: the role of contrast-enhanced MR imaging in predicting disease progression. , 2000, AJNR. American journal of neuroradiology.

[58]  Y. Fukuuchi,et al.  Microglia-specific localisation of a novel calcium binding protein, Iba1. , 1998, Brain research. Molecular brain research.

[59]  K. Jellinger,et al.  Alzheimer Disease: DMA Fragmentation Indicates Increased Neuronal Vulnerability, but not Apoptosis , 1998, Journal of neuropathology and experimental neurology.

[60]  J. Nelson,et al.  Long-term stabilization after bone marrow transplantation in juvenile metachromatic leukodystrophy. , 1998, Archives of neurology.

[61]  Hans Lassmann,et al.  Monocyte/macrophage differentiation in early multiple sclerosis lesions , 1995, Annals of neurology.

[62]  H. Moser,et al.  Adrenoleukodystrophy: a scoring method for brain MR observations. , 1994, AJNR. American journal of neuroradiology.

[63]  K. Figura,et al.  Molecular genetics of metachromatic leukodystrophy , 1991, Human mutation.

[64]  H. Wacker,et al.  Detection of a monocyte/macrophage differentiation antigen in routinely processed paraffin-embedded tissues by monoclonal antibody Ki-M1P. , 1991, Laboratory investigation; a journal of technical methods and pathology.

[65]  K Suzuki,et al.  Adrenoleukodystrophy. A clinical and pathological study of 17 cases. , 1975, Archives of neurology.

[66]  J. Peiffer [On metachromatic leukodystrophy (Scholz type)]. , 1959, Archiv fur Psychiatrie und Nervenkrankheiten, vereinigt mit Zeitschrift fur die gesamte Neurologie und Psychiatrie.