Patterns of Striatal Degeneration in Frontotemporal Dementia

Behavioral variant frontotemporal dementia and semantic dementia have been associated with striatal degeneration, but few studies have delineated striatal subregion volumes in vivo or related them to the clinical phenotype. We traced caudate, putamen, and nucleus accumbens on magnetic resonance images to quantify volumes of these structures in behavioral variant frontotemporal dementia, semantic dementia, Alzheimer disease, and healthy controls (n=12 per group). We further related these striatal volumes to clinical deficits and neuropathologic findings in a subset of patients. Behavioral variant frontotemporal dementia and semantic dementia showed significant overall striatal atrophy compared with controls. Moreover, behavioral variant frontotemporal dementia showed panstriatal degeneration, whereas semantic dementia featured a more focal pattern involving putamen and accumbens. Right-sided striatal atrophy, especially in the putamen, correlated with the overall behavioral symptom severity and with specific behavioral domains. At autopsy, patients with behavioral variant frontotemporal dementia and semantic dementia showed striking and severe tau or TAR DNA-binding protein of 43 kDa pathology, especially in ventral parts of the striatum. These results demonstrate that ventral striatum degeneration is a prominent shared feature in behavioral variant frontotemporal dementia and semantic dementia and may contribute to the social-emotional deficits common to both disorders.

[1]  P. Goldman-Rakic,et al.  Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  John Q. Trojanowski,et al.  Consensus Recommendations for the Postmortem Diagnosis of Alzheimer’s Disease , 1997, Neurobiology of Aging.

[3]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[4]  B. Miller,et al.  Neurodegenerative Diseases Target Large-Scale Human Brain Networks , 2009, Neuron.

[5]  P. Goldman-Rakic,et al.  Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  D. Margulies,et al.  Development of anterior cingulate functional connectivity from late childhood to early adulthood. , 2009, Cerebral cortex.

[7]  B. L. Miller,et al.  The natural history of temporal variant frontotemporal dementia , 2005, Neurology.

[8]  B L Miller,et al.  Patterns of brain atrophy in frontotemporal dementia and semantic dementia , 2002, Neurology.

[9]  L. Wahlund,et al.  Putaminal Volume in Frontotemporal Lobar Degeneration and Alzheimer Disease: Differential Volumes in Dementia Subtypes and Controls , 2009, American Journal of Neuroradiology.

[10]  K. Rankin,et al.  Binge eating is associated with right orbitofrontal-insular-striatal atrophy in frontotemporal dementia , 2007, Neurology.

[11]  Murray Grossman,et al.  TDP-43 pathologic lesions and clinical phenotype in frontotemporal lobar degeneration with ubiquitin-positive inclusions. , 2007, Archives of neurology.

[12]  D. Neary,et al.  Distinct behavioural profiles in frontotemporal dementia and semantic dementia , 2001, Journal of neurology, neurosurgery, and psychiatry.

[13]  J. Trojanowski,et al.  Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. , 2006, The American journal of pathology.

[14]  Greg Harris,et al.  Structural MR image processing using the BRAINS2 toolbox. , 2002, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[15]  Clifford R. Jack,et al.  Anatomic correlates of stereotypies in frontotemporal lobar degeneration , 2008, Neurobiology of Aging.

[16]  J. Trojanowski,et al.  A harmonized classification system for FTLD-TDP pathology , 2011, Acta Neuropathologica.

[17]  L. Tecott The genes and brains of mice and men. , 2003, The American journal of psychiatry.

[18]  K. Ikeda,et al.  Basal ganglia lesions in ‘Pick complex’: A topographic neuropathological study of 19 autopsy cases , 2002, Neuropathology : official journal of the Japanese Society of Neuropathology.

[19]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[20]  Clifford R. Jack,et al.  Comparison of different methodological implementations of voxel-based morphometry in neurodegenerative disease , 2005, NeuroImage.

[21]  R. Faber,et al.  Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. , 1999, Neurology.

[22]  B L Miller,et al.  Behavioral disorders in the frontal and temporal variants of frontotemporal dementia , 2004, Neurology.

[23]  Valentina Garibotto,et al.  Subcortical and deep cortical atrophy in Frontotemporal Lobar Degeneration , 2011, Neurobiology of Aging.

[24]  B L Miller,et al.  Dietary changes, compulsions and sexual behavior in frontotemporal degeneration. , 1995, Dementia.

[25]  J R Hodges,et al.  A study of stereotypic behaviours in Alzheimer’s disease and frontal and temporal variant frontotemporal dementia , 2003, Journal of neurology, neurosurgery, and psychiatry.

[26]  M. Niethammer,et al.  Shape analysis of the neostriatum in subtypes of frontotemporal lobar degeneration: Neuroanatomically significant regional morphologic change , 2011, Psychiatry Research: Neuroimaging.

[27]  J. Kril,et al.  Distribution of brain atrophy in behavioral variant frontotemporal dementia , 2005, Journal of the Neurological Sciences.

[28]  M. Laine,et al.  Striatal dopamine transporter and extrapyramidal symptoms in frontotemporal dementia , 2002, Neurology.

[29]  M. Folstein,et al.  Clinical diagnosis of Alzheimer's disease , 1984, Neurology.

[30]  N. Swindale,et al.  Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans , 2004, Annals of neurology.

[31]  David Mann,et al.  Frontotemporal lobar degeneration: clinical and pathological relationships , 2007, Acta Neuropathologica.

[32]  K Cheng,et al.  Organization of Corticostriatal and Corticoamygdalar Projections Arising from the Anterior Inferotemporal Area TE of the Macaque Monkey: A Phaseolus vulgaris Leucoagglutinin Study , 1997, The Journal of Neuroscience.

[33]  S. Dudek,et al.  Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice , 2007, Nature.

[34]  N C Andreasen,et al.  Improving tissue classification in MRI: a three-dimensional multispectral discriminant analysis method with automated training class selection. , 1999, Journal of computer assisted tomography.

[35]  J. Hodges,et al.  Clinicopathological correlates in frontotemporal dementia , 2004, Annals of neurology.

[36]  Sandra E. Black,et al.  Magnetic Resonance Imaging in Frontotemporal Dementia Shows Subcortical Atrophy , 2008, Dementia and Geriatric Cognitive Disorders.

[37]  Panteleimon Giannakopoulos,et al.  Cerebral cortex pathology in aging and Alzheimer's disease: a quantitative survey of large hospital-based geriatric and psychiatric cohorts , 1997, Brain Research Reviews.

[38]  W. Kamphorst,et al.  Complex compulsive behaviour in the temporal variant of frontotemporal dementia , 2001, Journal of Neurology.

[39]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[40]  A. Burns Clinical diagnosis of Alzheimer's disease , 1991 .

[41]  John L. Robinson,et al.  Clinical and pathological continuum of multisystem TDP-43 proteinopathies. , 2009, Archives of neurology.

[42]  C. Jack,et al.  Caudate atrophy on MRI is a characteristic feature of FTLD‐FUS , 2010, European journal of neurology.

[43]  J. Ashburner,et al.  Atrophy progression in semantic dementia with asymmetric temporal involvement: A tensor-based morphometry study , 2009, Neurobiology of Aging.

[44]  Nick C Fox,et al.  Magnetic resonance imaging signatures of tissue pathology in frontotemporal dementia. , 2005, Archives of neurology.

[45]  H. Kretzschmar,et al.  A new subtype of frontotemporal lobar degeneration with FUS pathology. , 2009, Brain : a journal of neurology.

[46]  Jennifer L. Whitwell,et al.  VBM signatures of abnormal eating behaviours in frontotemporal lobar degeneration , 2007, NeuroImage.

[47]  Marina Boccardi,et al.  Frontotemporal dementia as a neural system disease , 2005, Neurobiology of Aging.

[48]  John Q. Trojanowski,et al.  Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update , 2009, Acta Neuropathologica.

[49]  Majaz Moonis,et al.  Amyloid Deposition Begins in the Striatum of Presenilin-1 Mutation Carriers from Two Unrelated Pedigrees , 2007, The Journal of Neuroscience.

[50]  R. Carelli The nucleus accumbens and reward: neurophysiological investigations in behaving animals. , 2002, Behavioral and cognitive neuroscience reviews.

[51]  Maria Luisa Gorno-Tempini,et al.  Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. , 2008, Archives of neurology.

[52]  Guido F. Schauer,et al.  Neuroanatomical correlates of behavioural disorders in dementia. , 2005, Brain : a journal of neurology.

[53]  L. Wahlund,et al.  Caudate Nucleus Volumes in Frontotemporal Lobar Degeneration: Differential Atrophy in Subtypes , 2008, American Journal of Neuroradiology.

[54]  D. Dickson,et al.  Evaluation of subcortical pathology and clinical correlations in FTLD-U subtypes , 2009, Acta Neuropathologica.

[55]  Richard C Saunders,et al.  Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: Combined anterograde and retrograde tracing study in the Macaque brain , 2002, The Journal of comparative neurology.

[56]  J. Mazziotta,et al.  Rapid Automated Algorithm for Aligning and Reslicing PET Images , 1992, Journal of computer assisted tomography.

[57]  M. Weiner,et al.  Patterns of MRI atrophy in tau positive and ubiquitin positive frontotemporal lobar degeneration , 2007, Journal of Neurology, Neurosurgery, and Psychiatry.