Spatial and non-spatial functions of the parietal cortex

Although the parietal cortex is traditionally associated with spatial attention and sensorimotor integration, recent evidence also implicates it in higher order cognitive functions. We review relevant results from neuron recording studies showing that inferior parietal neurons integrate information regarding target location with a variety of non-spatial signals. Some of these signals are modulatory and alter a stimulus-evoked response according to the action, category, or reward associated with the stimulus. Other non-spatial inputs act independently, encoding the context or rules of a task even before the presentation of a specific target. Despite the ubiquity of non-spatial information in individual neurons, reversible inactivation of the parietal lobe affects only spatial orienting of attention and gaze, but not non-spatial aspects of performance. This suggests that non-spatial signals contribute to an underlying spatial computation, possibly allowing the brain to determine which targets are worthy of attention or action in a given task context.

[1]  David J. Freedman,et al.  Experience-dependent representation of visual categories in parietal cortex , 2006, Nature.

[2]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[3]  W. Newsome,et al.  Matching Behavior and the Representation of Value in the Parietal Cortex , 2004, Science.

[4]  Paul W. Glimcher,et al.  Response fields of intraparietal neurons quantified with multiple saccadic targets , 1998, Experimental Brain Research.

[5]  M. A. Steinmetz,et al.  Posterior Parietal Cortex Automatically Encodes the Location of Salient Stimuli , 2005, The Journal of Neuroscience.

[6]  Giovanni Maria Carlomagno,et al.  Heat flux sensors and infrared thermography , 2007, J. Vis..

[7]  Jacqueline Gottlieb,et al.  Neuronal Correlates of the Set-Size Effect in Monkey Lateral Intraparietal Area , 2008, PLoS biology.

[8]  Bruno B Averbeck,et al.  Neural Ensemble Decoding Reveals a Correlate of Viewer- to Object-Centered Spatial Transformation in Monkey Parietal Cortex , 2008, The Journal of Neuroscience.

[9]  Puiu F. Balan,et al.  Attention as a decision in information space , 2010, Trends in Cognitive Sciences.

[10]  Anna E. Ipata,et al.  Neurons in the lateral intraparietal area create a priority map by the combination of disparate signals , 2008, Experimental Brain Research.

[11]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[12]  J. Duncan The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour , 2010, Trends in Cognitive Sciences.

[13]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[14]  L. Itti,et al.  Search Goal Tunes Visual Features Optimally , 2007, Neuron.

[15]  Yq Liu,et al.  Intention and Attention: Different functional roles for LIPd and LIPv , 2010, Nature Neuroscience.

[16]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[17]  Parashkev Nachev,et al.  Space and the parietal cortex , 2007, Trends in Cognitive Sciences.

[18]  Lawrence H Snyder,et al.  Single Neurons in Posterior Parietal Cortex of Monkeys Encode Cognitive Set , 2004, Neuron.

[19]  M. Shadlen,et al.  A representation of the hazard rate of elapsed time in macaque area LIP , 2005, Nature Neuroscience.

[20]  A. Sereno,et al.  Attention and memory-related responses of neurons in the lateral intraparietal area during spatial and shape-delayed match-to-sample tasks. , 2006, Journal of neurophysiology.

[21]  Melina R. Uncapher,et al.  Posterior parietal cortex and episodic retrieval: convergent and divergent effects of attention and memory. , 2009, Learning & memory.

[22]  Jacqueline Gottlieb,et al.  Integration of Exogenous Input into a Dynamic Salience Map Revealed by Perturbing Attention , 2006, The Journal of Neuroscience.

[23]  Jacqueline Gottlieb,et al.  Functional Significance of Nonspatial Information in Monkey Lateral Intraparietal Area , 2009, The Journal of Neuroscience.

[24]  J. Lynch,et al.  The spatial distribution of pulvinar neurons that project to two subregions of the inferior parietal lobule in the macaque. , 1992, Cerebral cortex.

[25]  Jacqueline Gottlieb,et al.  Parietal control of attentional guidance: The significance of sensory, motivational and motor factors , 2009, Neurobiology of Learning and Memory.

[26]  Y. Cohen,et al.  Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus. , 2005, Journal of neurophysiology.

[27]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. II. Spatial properties. , 1991, Journal of neurophysiology.

[28]  Lawrence H. Snyder,et al.  Correlates of Stimulus-Response Congruence in the Posterior Parietal Cortex , 2007, Journal of Cognitive Neuroscience.

[29]  S. Dehaene,et al.  Representation of number in the brain. , 2009, Annual review of neuroscience.

[30]  L H Snyder,et al.  Nonspatial saccade-specific activation in area LIP of monkey parietal cortex. , 2003, Journal of neurophysiology.

[31]  Hidehiko Komatsu,et al.  Condition-dependent and condition-independent target selection in the macaque posterior parietal cortex. , 2009, Journal of neurophysiology.

[32]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[33]  David J. Freedman,et al.  Distinct Encoding of Spatial and Nonspatial Visual Information in Parietal Cortex , 2009, The Journal of Neuroscience.

[34]  Puiu F. Balan,et al.  Integration of Visuospatial and Effector Information during Symbolically Cued Limb Movements in Monkey Lateral Intraparietal Area , 2006, The Journal of Neuroscience.

[35]  Richard A. Andersen,et al.  Separate body- and world-referenced representations of visual space in parietal cortex , 1998, Nature.

[36]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[37]  E. Brannon,et al.  Monotonic Coding of Numerosity in Macaque Lateral Intraparietal Area , 2007, PLoS biology.

[38]  Christos Constantinidis,et al.  Effects of task and coordinate frame of attention in area 7a of the primate posterior parietal cortex. , 2011, Journal of vision.

[39]  Christopher J. Peck,et al.  Reward Modulates Attention Independently of Action Value in Posterior Parietal Cortex , 2009, The Journal of Neuroscience.

[40]  R. Andersen,et al.  Coding of intention in the posterior parietal cortex , 1997, Nature.

[41]  Patrick Cavanagh,et al.  Perception of biological motion in parietal patients , 2003, Neuropsychologia.

[42]  Pieter R. Roelfsema,et al.  Attention-Gated Reinforcement Learning of Internal Representations for Classification , 2005, Neural Computation.

[43]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.

[44]  S. Ben Hamed,et al.  Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis , 2001, Experimental Brain Research.

[45]  R. Andersen,et al.  Motor intention activity in the macaque's lateral intraparietal area. II. Changes of motor plan. , 1996, Journal of neurophysiology.