Identification and predictive control for a circulation fluidized bed boiler

This paper introduces the design and presents the research findings of the identification and control application for an industrial Circulation Fluidized Bed (CFB) boiler. Linear Parameter Varying (LPV) model is used in the model identification where steam flow is selected as the operation-point (scheduling) variable. Three kinds of weighting functions, namely linear, cubic splines and Gaussian functions are compared. LPV model based Model Predictive Control (MPC) is also simulated. Test results show that LPV model is more accurate than linear model, and LPV MPC yields a better control effect than linear MPC.

[1]  Yaman Arkun,et al.  Quasi-Min-Max MPC algorithms for LPV systems , 2000, Autom..

[2]  Roderick Murray-Smith,et al.  Multiple Model Approaches to Modelling and Control , 1997 .

[3]  Hong Chen,et al.  Stabilizing model predictive control for LPV systems subject to constraints with parameter-dependent control law , 2009, 2009 American Control Conference.

[4]  LiMin Fu,et al.  Introduction to knowledge-based neural networks , 1995, Knowl. Based Syst..

[5]  Emanuele Garone,et al.  An off-line MPC scheme for discrete-time linear parameter varying systems , 2009, 2009 European Control Conference (ECC).

[6]  Chao Wu,et al.  Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm , 2011, Knowl. Based Syst..

[7]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[8]  Yucai Zhu,et al.  Multivariable System Identification For Process Control , 2001 .

[9]  Zuhua Xu,et al.  A method of LPV model identification for control , 2008 .

[10]  Alvaro Sanz,et al.  Modeling circulating fluidized bed biomass gasifiers. A pseudo-rigorous model for stationary state , 2005 .

[11]  Sangchul Won,et al.  Model Predictive Control for Linear Parameter Varying Systems Using a New Parameter Dependent Terminal Weighting Matrix , 2006, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[12]  Yucai Zhu,et al.  LPV Model Identification Using Blended Linear Models with Given Weightings , 2009 .

[13]  Marco Lovera,et al.  Identification of a class of non-linear parametrically varying models , 2003 .

[14]  Bassam Bamieh,et al.  Identification of linear parameter varying models , 2002 .

[15]  Michel Verhaegen,et al.  Closed-loop subspace Predictive Control for Linear Parameter Varying systems (i) - the nominal case , 2009, 2009 European Control Conference (ECC).

[16]  Yucai Zhu Multivariable process identification for mpc: the asymptotic method and its applications , 1998 .

[17]  Alireza Karimi,et al.  Data-driven precompensator tuning for linear parameter varying systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[18]  L. Wang,et al.  The agile improvement of MMORPGs based on the enhanced chaotic neural network , 2011, Knowl. Based Syst..

[19]  Roland Tóth,et al.  Asymptotically optimal orthonormal basis functions for LPV system identification , 2009, Autom..

[20]  Michael A. Henson,et al.  Nonlinear model predictive control: current status and future directions , 1998 .

[21]  Manfred Morari,et al.  Explicit model predictive control for linear parameter-varying systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[22]  Didier Henrion,et al.  Polynomial LPV synthesis applied to turbofan engines , 2007 .

[23]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[24]  J. Ramos,et al.  Identification of linear parameter varying systems using an iterative deterministic-stochastic subspace approach , 2007, 2007 European Control Conference (ECC).

[25]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[26]  Yucai Zhu,et al.  Nonlinear MPC using an identified LPV model , 2009 .

[27]  Wang Bo,et al.  Combustion model for staged circulating fluidized bed boiler , 1997 .

[28]  Michael Athans,et al.  Guaranteed properties of gain scheduled control for linear parameter-varying plants , 1991, Autom..

[29]  Qian Ji-xin Multi-objective and layered steady-state optimization method of model predictive control , 2005 .

[30]  Weiping Zhang,et al.  Control of discrete chaotic systems based on echo state network modeling with an adaptive noise canceler , 2012, Knowl. Based Syst..

[31]  Hugues Garnier,et al.  Refined instrumental variable methods for identification of LPV Box-Jenkins models , 2010, Autom..

[32]  Michel Verhaegen,et al.  Subspace identification of MIMO LPV systems using a periodic scheduling sequence , 2007, Autom..