Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon

Spinel Li4Ti5O12 nano-particles with double conductive surface modification of Ti(III) and carbon were synthesized by a facile solid-state reaction, in which the polyaniline (PANI) coated TiO2 particles and a lithium salt were used as precursors. On heat treatment under an argon atmosphere containing 5% H2, the carbonization of PANI effectively restricted the particle-size growth of Li4Ti5O12 and reduced the surface Ti(IV) into Ti(III). The surface modification combined with tailored particle size can improve the surface conductivity and shorten the Li-ion diffusion path. Furthermore, both the Ti(III) surface modification and the tailored particles (50–70nm) have the potential to increase the solid solution (single-phase insertion/extraction) during the electrochemical process. Electrochemical analysis indicated that the presence of the solid solution is beneficial for Li-ion mobility. Thereby, the prepared Li4Ti5O12 displays high power performance.

[1]  P. He,et al.  Electrochemical kinetics study of Li-ion in Cu6Sn5 electrode of lithium batteries by PITT and EIS , 2008 .

[2]  J. Jumas,et al.  Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel , 2004 .

[3]  Jaephil Cho,et al.  Spinel Li4Ti5O12 Nanowires for High-Rate Li-Ion Intercalation Electrode , 2007 .

[4]  M. Wagemaker,et al.  A Kinetic Two‐Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12 , 2006 .

[5]  Seok-Gwang Doo,et al.  Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. , 2008, Journal of the American Chemical Society.

[6]  Haoshen Zhou,et al.  A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities. , 2005, Angewandte Chemie.

[7]  M. Armand,et al.  Building better batteries , 2008, Nature.

[8]  A. Deschanvres,et al.  Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2−xO4 0 ⩽ x ⩽ 0, 333 , 1971 .

[9]  Z. Wen,et al.  Preparation and electrochemical performance of Ag doped Li4Ti5O12 , 2004 .

[10]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[11]  Yongyao Xia,et al.  Carbon-Coated Li4Ti5O12 as a High Rate Electrode Material for Li-Ion Intercalation , 2007 .

[12]  Min Gyu Kim,et al.  The electrochemical lithium reactions of monoclinic ZnP2 material , 2007 .

[13]  B. V. R. Chowdari,et al.  Influence of Li-Ion Kinetics in the Cathodic Performance of Layered Li ( Ni1 / 3Co1 / 3Mn1 / 3 ) O 2 , 2004 .

[14]  U. Lee,et al.  Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere , 2006 .

[15]  David Wexler,et al.  Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. , 2006, Angewandte Chemie.

[16]  P. Bruce,et al.  TiO2(B) Nanowires as an Improved Anode Material for Lithium‐Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte , 2006 .

[17]  J. Pereira‐Ramos,et al.  Electrochemical behavior of a lithium titanium spinel compound synthesized via a sol–gel process , 1998 .

[18]  Haoshen Zhou,et al.  Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode , 2007 .

[19]  J. Tarascon,et al.  Electrochemical lithium reactivity with nanotextured anatase-type TiO2 , 2005 .

[20]  Haoshen Zhou,et al.  Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material , 2007 .

[21]  K. Kanamura,et al.  Preparation and characterization of three dimensionally ordered macroporous Li4Ti5O12 anode for lithium batteries , 2007 .

[22]  L. Bugyi,et al.  Enhanced dispersion and stability of gold nanoparticles on stoichiometric and reduced TiO2(110) surface in the presence of molybdenum , 2008 .

[23]  T. Jow,et al.  Low temperature performance of nanophase Li4Ti5O12 , 2006 .

[24]  Changyin Jiang,et al.  High-density spherical Li4Ti5O12/C anode material with good rate capability for lithium ion batteries , 2007 .

[25]  K. Poeppelmeier,et al.  Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties , 2006 .

[26]  Jeff Dahn,et al.  Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4 , 1989 .

[27]  Montse Casas-Cabanas,et al.  Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO4. , 2008, Nature materials.

[28]  M. Yoshio,et al.  Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere , 2004 .

[29]  K. Zaghib,et al.  Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators , 2003 .

[30]  M. Wagemaker,et al.  Li-ion diffusion in the equilibrium nanomorphology of spinel Li(4+x)Ti(5)O(12). , 2009, The journal of physical chemistry. B.

[31]  Haoshen Zhou,et al.  The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. , 2008, Angewandte Chemie.

[32]  L. Kavan,et al.  Li Insertion into Li[sub 4]Ti[sub 5]O[sub 12] (Spinel) , 2003 .

[33]  Tao Zheng,et al.  An Asymmetric Hybrid Nonaqueous Energy Storage Cell , 2001 .

[34]  P. Adelhelm,et al.  Hollow Fe-containing carbon fibers with tubular tertiary structure: preparation and Li-storage properties , 2009 .

[35]  Jie Gao,et al.  Natural graphite coated by Si nanoparticles as anode materials for lithium ion batteries , 2007 .