Algorithmic Solvability of the Lifting-Extension Problem

Let X and Y be finite simplicial sets (e.g. finite simplicial complexes), both equipped with a free simplicial action of a finite group G. Assuming that Y is d-connected and $$\dim X\le 2d$$dimX≤2d, for some $$d\ge 1$$d≥1, we provide an algorithm that computes the set of all equivariant homotopy classes of equivariant continuous maps $$|X|\rightarrow |Y|$$|X|→|Y|; the existence of such a map can be decided even for $$\dim X\le 2d+1$$dimX≤2d+1. This yields the first algorithm for deciding topological embeddability of a k-dimensional finite simplicial complex into $$\mathbb R^n$$Rn under the condition $$k\le \frac{2}{3} n-1$$k≤23n-1. More generally, we present an algorithm that, given a lifting-extension problem satisfying an appropriate stability assumption, computes the set of all homotopy classes of solutions. This result is new even in the non-equivariant situation.

[1]  Ioan Mackenzie James,et al.  Fibrewise Homotopy Theory , 1998 .

[2]  Jirí Matousek,et al.  Polynomial-Time Computation of Homotopy Groups and Postnikov Systems in Fixed Dimension , 2012, SIAM J. Comput..

[3]  Jim Stasheff,et al.  H-Spaces from a Homotopy Point of View , 1970 .

[4]  Jirí Matousek,et al.  Extendability of Continuous Maps Is Undecidable , 2013, Discret. Comput. Geom..

[5]  Jirí Matousek,et al.  Computing All Maps into a Sphere , 2011, J. ACM.

[6]  Edgar H. Brown,et al.  FINITE COMPUTABILITY OF POSTNIKOV COMPLEXES , 1957 .

[7]  C. A. Robinson Moore-postnikov systems for non-simple fibrations , 1972 .

[8]  Greg Friedman,et al.  An elementary illustrated introduction to simplicial sets , 2008, 0809.4221.

[9]  W. Dwyer,et al.  CHAPTER 2 – Homotopy Theories and Model Categories , 1995 .

[10]  J. M. Boardman,et al.  FIBREWISE HOMOTOPY THEORY (Springer Monographs in Mathematics) , 1999 .

[11]  Weishu Shih,et al.  Homologie des espaces fibrés , 1962 .

[12]  C. Weber Plongements de polyèdres dans le domaine métastable , 1967 .

[13]  J. Matousek,et al.  Using The Borsuk-Ulam Theorem , 2007 .

[14]  Jirí Matousek,et al.  Hardness of embedding simplicial complexes in Rd , 2009, SODA.

[15]  A. Björner Topological methods , 1996 .

[16]  Marek Filakovsk'y Effective chain complexes for twisted products , 2012 .

[17]  Julio Rubio,et al.  Constructive Homological Algebra and Applications , 2012, 1208.3816.

[18]  Marek Filakovský Algorithmic construction of the Postnikov tower for diagrams of simplicial sets , 2015 .

[19]  R. Ho Algebraic Topology , 2022 .

[20]  Luk'avs Vokvr'inek Constructing homotopy equivalences of chain complexes of free ZG-modules , 2013 .

[21]  Luk'avs Vokvr'inek,et al.  Decidability of the extension problem for maps into odd-dimensional spheres , 2014, 1401.3758.

[22]  Saunders MacLane,et al.  On the Groups H(Π, n), II: Methods of Computation , 1954 .

[23]  Greg Friedman Survey Article: An elementary illustrated introduction to simplicial sets , 2012 .

[24]  Lukás Vokrínek Computing the abelian heap of unpointed stable homotopy classes of maps , 2013, ArXiv.

[25]  Jiří Matoušek,et al.  Hardness of embedding simplicial complexes in $\mathbb {R}^d$ , 2008, 0807.0336.

[26]  Philip S. Hirschhorn Model categories and their localizations , 2003 .

[27]  Lukáš Vokřínek Heaps and unpointed stable homotopy theory , 2013 .

[28]  James F. McClendon,et al.  Obstruction theory in fiber spaces , 1971 .

[29]  Glen E. Bredon,et al.  Equivariant cohomology theories , 1967 .

[30]  Lukáš Vokřínek Constructing homotopy equivalences of chain complexes of free ZG-modules , 2013 .

[31]  Jon P. May Simplicial objects in algebraic topology , 1993 .

[32]  Seth Pettie,et al.  Linear-Time Approximation for Maximum Weight Matching , 2014, JACM.