LASER BASED OBSERVATION OF SPACE DEBRIS: TAKING BENEFITS FROM THE FUNDAMENTAL WAVE

After the successful experimental demonstration of the prior published concept on laser-based monitoring of space debris in early 2012, we will present further technological and conceptual advancements of this position sensing scheme. The laser based measurement of LEO space debris positions in general offers the potential of a very high accuracy on the order of 10 meters in 3D, which in turn is the input for orbit processing of objects which are seemingly on collisional course. We argue that it is beneficial for the photon budget to make use of the so called fundamental wave, which is present in frequency doubled laser systems anyway. Thus, the here proposed move to near infrared wavelength is technologically easy to achieve and promising towards an operational laser-based debris ranging and tracking system.