Positron-emission tomography CT to identify local recurrence in stage I lung cancer patients 1 year after stereotactic body radiation therapy

PurposeTo evaluate the diagnostic value of positron-emission tomography/computed tomography (PET/CT) in stage I lung cancer patients treated with stereotactic body radiation therapy (SBRT), who have suspicious or unclear local recurrence findings in CT 1 year after treatment.Patients and methodsA group of 29 patients with unclear or suspicious CT findings 1 year after SBRT were examined with PET/CT. The ability of standard uptake values (SUVmax, SUVmean and posttherapeutic reduction in SUV) to detect local failure and identify patients at a high risk of disease-specific death was evaluated using logrank statistics. Histology and clinical follow-up were the gold standards for local recurrence.ResultsSUVmean greater than 3.44 (p = 0.001); SUVmax greater than 5.48 (p = 0.009) or a relative reduction in SUVmean or SUVmax of less than 43 (p = 0.030) or 52 % (p = 0.025), respectively, was indicative of local recurrence. These parameters also correlated with an increased risk of disease-specific death: SUVmean greater than 2.81 (p = 0.023); SUVmax greater than 3.45 (p = 0.007) or a relative reduction in SUVmean or SUVmax of less than 32 (p = 0.015) or 52 % (p = 0.013), respectively, was indicative of an increased risk of disease-specific death.ConclusionPET/CT performed 1 year after SBRT can reliably identify local recurrence and therefore help to clarify unclear CT findings. As posttherapeutic glucose metabolism also correlates with disease-specific survival, PET/CT may help to stratify lung cancer patients for additional treatment 1 year after SBRT.ZusammenfassungZielUntersuchung der diagnostischen Wertigkeit einer zusätzlichen PET-CT-Untersuchung beim Nachweis von Lokalrezidiven bei Lungenkarzinompatienten im Stadium I, die 1 Jahr nach stereotaktischer Bestrahlung (SBRT) unklare oder verdächtige lokale Herde im CT aufweisen.Patienten und MethodenEs wurde ein Kollektiv mit 29 Patienten mit unklarem oder verdächtigem CT-Befund 1 Jahr nach SBRT untersucht. Die Wertigkeit des posttherapeutischen SUVmax, SUVmean und der posttherapeutischen Abnahme der SUV-Werte zur Detektion von Lokalrezidiven und zur Stratifizierung von Patientengruppen mit erhöhtem Risiko für einen krankheitsspezifischen Tod wurde mittels Log-rank-Statistik evaluiert. Die Histologie und der klinische Verlauf wurden als Goldstandard herangezogen.ErgebnisseSUVmean-Werte höher als 3,44 (p = 0,001), SUVmax-Werte höher als 5,48 (p = 0,009) oder eine Abnahme des SUVmean oder des SUVmax von weniger als 43 % (p = 0,030) bzw. 52 % (p = 0,025) wiesen auf ein Lokalrezidiv hin. Diese Parameter zeigten auch eine Korrelation mit dem krankheitsspezifischen Überleben: SUVmean-Werte über 2,81 (p = 0,023), SUVmax über 3,45 (p = 0,007) oder eine Abnahme des SUVmean oder des SUVmax von weniger als 32 % (p = 0,015) bzw. 52 % (p = 0,013) korrelierten mit einem vermehrten Risiko.SchlussfolgerungBei Patienten mit verdächtigen oder unklaren Befunden in der CT 1 Jahr nach SBRT hat die PET-CT eine hohe Treffsicherheit beim Nachweis von Lokalrezidiven. Da der posttherapeutische Glukosemetabolismus auch mit dem krankheitsspezifischen Überleben korreliert, könnte die PET-CT zur Stratifizierung von Patienten, die von einer zusätzlichen Behandlung profitieren, hilfreich sein.

[1]  Jan Nyman,et al.  Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  Johannes A. Langendijk,et al.  Clinical Investigation : Thoracic Cancer Residual 18 F-FDG-PET Uptake 12 Weeks After Stereotactic Ablative Radiotherapy for Stage I Non-Small-Cell Lung Cancer Predicts Local Control , 2012 .

[3]  H. Geinitz,et al.  Stereotactic hypofractionated radiotherapy in stage I (T1-2 N0 M0) non-small-cell lung cancer (NSCLC) , 2006, Acta oncologica.

[4]  Ke Sheng,et al.  Computed tomography-based anatomic assessment overestimates local tumor recurrence in patients with mass-like consolidation after stereotactic body radiotherapy for early-stage non-small cell lung cancer. , 2012, International journal of radiation oncology, biology, physics.

[5]  E. Oermann,et al.  CyberKnife radiosurgery for inoperable stage IA non-small cell lung cancer: 18F-fluorodeoxyglucose positron emission tomography/computed tomography serial tumor response assessment , 2010, Journal of hematology & oncology.

[6]  Joe Y. Chang,et al.  Positron emission tomography for assessing local failure after stereotactic body radiotherapy for non-small-cell lung cancer. , 2012, International journal of radiation oncology, biology, physics.

[7]  C. Yiannoutsos,et al.  A pilot trial of serial 18F-fluorodeoxyglucose positron emission tomography in patients with medically inoperable stage I non-small-cell lung cancer treated with hypofractionated stereotactic body radiotherapy. , 2010, International journal of radiation oncology, biology, physics.

[8]  S. Graziano Non-small cell lung cancer: clinical value of new biological predictors , 1997 .

[9]  J. Dignam,et al.  Choice and interpretation of statistical tests used when competing risks are present. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[10]  K. Herfarth,et al.  Stereotactic Single-Dose Radiotherapy of Lung Metastases , 2007, Strahlentherapie und Onkologie.

[11]  Matthias Reimold,et al.  18F-FDG PET for assessment of therapy response and preoperative re-evaluation after neoadjuvant radio-chemotherapy in stage III non-small cell lung cancer , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[12]  J. Matthews,et al.  Metabolic (FDG-PET) response after radical radiotherapy/chemoradiotherapy for non-small cell lung cancer correlates with patterns of failure. , 2005, Lung cancer.

[13]  J. Lammers,et al.  Molecular and biological factors in the prognosis of non-small cell lung cancer. , 1995, The European respiratory journal.

[14]  Maria Carmen De Santis,et al.  Whole-Brain Radiotherapy Combined with Surgery or Stereotactic Radiotherapy in Patients with Brain Oligometastases , 2011, Strahlentherapie und Onkologie.

[15]  C. Zamboglou,et al.  Stereotactic radiotherapy in the liver hilum , 2011, Strahlentherapie und Onkologie.

[16]  Issam El Naqa,et al.  Lung STEREOTACTIC BODY RADIATION THERAPY FOR EARLY-STAGE NON – SMALL-CELL LUNG CANCER : THE PATTERN OF FAILURE IS DISTANT , 2010 .

[17]  J. Itami,et al.  Stereotactic Body Radiotherapy for Lung Tumors at the Pulmonary Hilum , 2009, Strahlentherapie und Onkologie.

[18]  H. Groen,et al.  18F-FDG PET during stereotactic body radiotherapy for stage I lung tumours cannot predict outcome: a pilot study , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[19]  W. Tan,et al.  Combined Effect of Genetic Polymorphisms in P53, P73, and MDM2 on Non-small Cell Lung Cancer Survival , 2011, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[20]  Michael Flentje,et al.  Stereotactic Radiotherapy of Targets in the Lung and Liver , 2001, Strahlentherapie und Onkologie.

[21]  John Cho,et al.  Stereotactic body radiotherapy for medically inoperable lung cancer: prospective, single-center study of 108 consecutive patients. , 2012, International journal of radiation oncology, biology, physics.

[22]  N. Andratschke Stereotactic ablative radiotherapy for inoperable stage I NSCLC. , 2012, The Lancet. Oncology.

[23]  Lech Papiez,et al.  Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. , 2009, International journal of radiation oncology, biology, physics.

[24]  M. Schwaiger,et al.  Respiratory gated [18F]FDG PET/CT for target volume delineation in stereotactic radiation treatment of liver metastases , 2012, Strahlentherapie und Onkologie.

[25]  Pietro Mancosu,et al.  Stereotactic Body Radiation Therapy (SBRT) for adrenal metastases , 2011, Strahlentherapie und Onkologie.

[26]  Danny Rischin,et al.  Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[27]  Joshua D. Lawson,et al.  Locoregional and distant failure following image-guided stereotactic body radiation for early-stage primary lung cancer. , 2011, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[28]  Michael Molls,et al.  Stereotactic radiotherapy of histologically proven inoperable stage I non-small cell lung cancer: patterns of failure. , 2011, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[29]  Achim Zeileis,et al.  Generalized Maximally Selected Statistics , 2008, Biometrics.

[30]  David Binns,et al.  Early FDG-PET imaging after radical radiotherapy for non-small-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. , 2004, International journal of radiation oncology, biology, physics.

[31]  K. Hornik,et al.  A Lego System for Conditional Inference , 2006 .