Studying the stability of Ni supported on modified with CeO2 alumina catalysts for the biogas dry reforming reaction

[1]  N. Charisiou,et al.  Syngas production via the biogas dry reforming reaction over Ni supported on zirconia modified with CeO2 or La2O3 catalysts , 2017 .

[2]  I. Yentekakis,et al.  Biogas Management: Advanced Utilization for Production of Renewable Energy and Added-value Chemicals , 2017, Front. Environ. Sci..

[3]  M. Al-Marri,et al.  Catalytic evaluation of nickel nanoparticles in methane steam reforming , 2016 .

[4]  G. Rupprechter,et al.  Methane dry reforming over ceria-zirconia supported Ni catalysts , 2016 .

[5]  Yongxiang Zhao,et al.  Carbon intermediates during CO2 reforming of methane over NiCaOZrO2 catalysts: A temperature-programmed surface reaction study , 2016 .

[6]  N. Charisiou,et al.  Influence of the synthesis method parameters used to prepare nickel-based catalysts on the catalytic performance for the glycerol steam reforming reaction , 2016 .

[7]  Zhongkui Zhao,et al.  Dry reforming of methane towards CO-rich hydrogen production over robust supported Ni catalyst on hierarchically structured monoclinic zirconia nanosheets , 2016 .

[8]  Zhang Jianwei,et al.  Hydrogen production by catalytic steam reforming of hydrocarbon fuels over Ni/Ce–Al2O3 bifunctional catalysts: Effects of SrO addition , 2016 .

[9]  Liang Zeng,et al.  Efficient hydrogen production from ethanol steam reforming over La-modified ordered mesoporous Ni-based catalysts , 2016 .

[10]  E. Diamadopoulos,et al.  Dry Reforming of Methane: Catalytic Performance and Stability of Ir Catalysts Supported on γ-Al2O3, Zr0.92Y0.08O2−δ (YSZ) or Ce0.9Gd0.1O2−δ (GDC) Supports , 2015, Topics in Catalysis.

[11]  N. Charisiou,et al.  Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction: Influence of the synthesis method , 2015 .

[12]  C. Battocchio,et al.  Ni/CeO2-Al2O3 catalysts for the dry reforming of methane: the effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance , 2015 .

[13]  A. Pintar,et al.  Effect of synthesis route of mesoporous zirconia based Ni catalysts on coke minimization in conversion of biogas to synthesis gas , 2015 .

[14]  S. Sahebdelfar,et al.  Thermodynamic analysis of carbon dioxide reforming of methane and its practical relevance , 2015 .

[15]  Leilei Xu,et al.  Mesoporous nanocrystalline ceria–zirconia solid solutions supported nickel based catalysts for CO2 reforming of CH4 , 2012 .

[16]  M. Goula,et al.  Biogas reforming for syngas production over nickel supported on ceria–alumina catalysts , 2012 .

[17]  Dapeng Liu,et al.  Methane reforming with carbon dioxide over a Ni/ZiO2–SiO2 catalyst: Influence of pretreatment gas atmospheres , 2012 .

[18]  Tao Huang,et al.  Methane reforming reaction with carbon dioxide over SBA-15 supported NiMo bimetallic catalysts , 2011 .

[19]  J. Fierro,et al.  Biogas reforming over bimetallic PdNi catalysts supported on phosphorus-modified alumina , 2011 .

[20]  M. Terrones,et al.  Evaluating the characteristics of multiwall carbon nanotubes , 2011 .

[21]  Fereshteh Meshkani,et al.  Nickel catalyst supported on magnesium oxide with high surface area and plate-like shape: A highly stable and active catalyst in methane reforming with carbon dioxide , 2011 .

[22]  Fereshteh Meshkani,et al.  Ni catalysts supported on nanocrystalline magnesium oxide for syngas production by CO2 reforming of CH4 , 2011 .

[23]  N. Amin,et al.  Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation , 2011 .

[24]  Prashant Kumar,et al.  Influence of the Catalyst Preparation Method, Surfactant Amount, and Steam on CO2 Reforming of CH4 over 5Ni/Ce0.6Zr0.4O2 Catalysts , 2011 .

[25]  Rafael Molina,et al.  Catalytic performance of Ni–Pr supported on delaminated clay in the dry reforming of methane , 2011 .

[26]  A. Cao,et al.  Stabilizing metal nanoparticles for heterogeneous catalysis. , 2010, Physical chemistry chemical physics : PCCP.

[27]  M. Goula,et al.  An experimental and theoretical approach for the biogas steam reforming reaction , 2010 .

[28]  T. Viveros,et al.  COMPLETE OXIDATION OF METHANE OVER PT/CEO2-Al2O3 CATALYSTS , 2009 .

[29]  Prashant Kumar,et al.  Nickel-Based Ceria, Zirconia, and Ceria–Zirconia Catalytic Systems for Low-Temperature Carbon Dioxide Reforming of Methane , 2007 .

[30]  H. Lasa,et al.  Coke Formation over a Nickel Catalyst under Methane Dry Reforming Conditions: Thermodynamic and Kinetic Models , 2005 .

[31]  F. Frusteri,et al.  TEM evidence for factors affecting the genesis of carbon species on bare and K-promoted Ni/MgO catalysts during the dry reforming of methane , 2002 .

[32]  Antonio Monzón,et al.  Methane reforming with CO2 over Ni/ZrO2–CeO2 catalysts prepared by sol–gel , 2000 .

[33]  J. Bitter,et al.  Deactivation and Coke Accumulation during CO2/CH4 Reforming over Pt Catalysts , 1999 .

[34]  A. Lemonidou,et al.  Carbon dioxide reforming of methane over 5 wt.% nickel calcium aluminate catalysts – effect of preparation method , 1998 .

[35]  Jens R. Rostrup-Nielsen,et al.  Industrial relevance of coking , 1997 .

[36]  M. Bradford,et al.  Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity , 1996 .