Robust extended Kalman filter estimation with moving window through a quadratic programming formulation
暂无分享,去创建一个
Marcelo Farenzena | J. O. Trierweiler | Jorge O. Trierweiler | Andressa Apio | M. Farenzena | Andressa Apio
[2] Rudolph van der Merwe,et al. The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).
[3] Mauro Gamberi,et al. Motion Analysis System for the digitalization and assessment of manual manufacturing and assembly processes , 2018 .
[4] Karl-Erik Årzén,et al. Modeling and optimization with Optimica and JModelica.org - Languages and tools for solving large-scale dynamic optimization problems , 2010, Comput. Chem. Eng..
[5] James B. Rawlings,et al. Critical Evaluation of Extended Kalman Filtering and Moving-Horizon Estimation , 2005 .
[6] Song Huang,et al. Calculation Algorithm of Tire-Road Friction Coefficient Based on Limited-Memory Adaptive Extended Kalman Filter , 2019 .
[7] Sirish L. Shah,et al. Nonlinear Bayesian state estimation: A review of recent developments , 2012 .
[8] Receding Nonlinear Kalman (RNK) Filter for Nonlinear Constrained State Estimation , 2011 .
[9] Argimiro Resende Secchi,et al. State estimators for better bioprocesses operation , 2012 .
[10] H. Bock,et al. A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .
[11] C. V. Rao,et al. Constrained process monitoring: Moving‐horizon approach , 2002 .
[12] David Q. Mayne,et al. Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..
[13] C. Striebel,et al. On the maximum likelihood estimates for linear dynamic systems , 1965 .
[14] D. Bonvin,et al. Application of estimation techniques to batch reactors—III. Modelling refinements which improve the quality of state and parameter estimation , 1990 .
[15] James B. Rawlings,et al. Particle filtering and moving horizon estimation , 2006, Comput. Chem. Eng..
[16] J. Rawlings,et al. Nonlinear Moving Horizon State Estimation , 1995 .
[17] Raghunathan Rengaswamy,et al. A novel approach for benchmarking and assessing the performance of state estimators. , 2018, ISA transactions.
[18] José Eduardo Weber dos Santos,et al. Robust Tuning for Classical MPC through the Multi-scenarios Approach , 2019 .
[19] Jay H. Lee,et al. Receding Horizon Recursive State Estimation , 1993, 1993 American Control Conference.
[20] Keck Voon Ling,et al. Receding horizon recursive state estimation , 1999, IEEE Trans. Autom. Control..
[21] M.L.J. Hautus,et al. Controllability and observability conditions of linear autonomous systems , 1969 .
[22] Masoud Soroush. State and parameter estimations and their applications in process control , 1998 .
[23] Wook Hyun Kwon,et al. A receding horizon Kalman FIR filter for discrete time-invariant systems , 1999, IEEE Trans. Autom. Control..
[24] G. Evensen. The ensemble Kalman filter for combined state and parameter estimation , 2009, IEEE Control Systems.
[25] R. E. Kalman,et al. A New Approach to Linear Filtering and Prediction Problems , 2002 .
[26] Marcelo Farenzena,et al. Comparison of Kalman filter-based approaches for permanent downhole gauge pressure estimation in offshore oil production , 2019 .
[27] Johannes P. Schlöder,et al. A real-time algorithm for moving horizon state and parameter estimation , 2011, Comput. Chem. Eng..
[28] Jay H. Lee,et al. Constrained linear state estimation - a moving horizon approach , 2001, Autom..
[29] Lorenz T. Biegler,et al. Development of robust extended Kalman filter and moving window estimator for simultaneous state and parameter/disturbance estimation , 2018 .
[31] L. Biegler,et al. A FAST COMPUTATIONAL FRAMEWORK FOR LARGE-SCALE MOVING HORIZON ESTIMATION , 2007 .
[32] John D. Hedengren,et al. GEKKO Optimization Suite , 2018, Processes.
[33] A. Jazwinski. Limited memory optimal filtering , 1968 .
[34] D. Bonvin,et al. Application of estimation techniques to batch reactors—II. Experimental studies in state and parameter estimation , 1989 .
[35] Jorge Otávio Trierweiler,et al. Multivariable PID controller design for chemical processes by frequency response approximation , 2013 .
[36] Gregory L. Plett,et al. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation , 2004 .
[37] Jorge Otávio Trierweiler,et al. PDG Pressure Estimation in Offshore Oil Well: Extended Kalman Filter vs. Artificial Neural Networks , 2019 .
[38] Jay H. Lee,et al. A moving horizon‐based approach for least‐squares estimation , 1996 .
[39] R. Gudi,et al. Multirate state and parameter estimation in an antibiotic fermentation with delayed measurements , 1994, Biotechnology and bioengineering.
[40] N. Metropolis,et al. The Monte Carlo method. , 1949 .
[41] Claudio Scali,et al. Parameter estimation in Extended Kalman Filters for quality control in polymerization reactors , 1996 .
[42] Giorgio Battistelli,et al. Receding-horizon estimation for discrete-time linear systems , 2003, IEEE Trans. Autom. Control..
[43] Ravi N. Banavar. A game theoretic approach to linear dynamic estimation , 1992 .
[44] S. Haykin. Kalman Filtering and Neural Networks , 2001 .
[45] Sebastian Engell,et al. Optimization-based state estimation — A comparative study for the batch polycondensation of polyethyleneterephthalate , 2001, 2001 European Control Conference (ECC).
[46] Marcelo Farenzena,et al. Fast Offshore Wells Model (FOWM): A practical dynamic model for multiphase oil production systems in deepwater and ultra-deepwater scenarios , 2017, Comput. Chem. Eng..
[47] Karl Henrik Johansson,et al. The quadruple-tank process: a multivariable laboratory process with an adjustable zero , 2000, IEEE Trans. Control. Syst. Technol..
[48] Raghunathan Rengaswamy,et al. Receding-Horizon Nonlinear Kalman (RNK) Filter for State Estimation , 2013, IEEE Transactions on Automatic Control.