Robust extended Kalman filter estimation with moving window through a quadratic programming formulation

Abstract In this work, two new formulations for the extended (MW-EKF) and robust extended Kalman filter with moving window estimation (MW-REKF) are proposed. The MW-EKF and MW-REKF are formulated using an elegant quadratic programming problem that facilitates its implementation and decreases its computational cost. Besides that, the constrained extended Kalman filter (CEKF), constrained extended Kalman filter and smoother (CEKFS) and the moving horizon estimation (MHE) are compared in terms of computational cost and fit to the real data. The comparison is performed over a spherical-quadruple-tank model with different settings aiming to raise each approach's advantages and disadvantages. For both state and parameter estimation the MW-REKF has shown the smoothest and most robust behavior among all methodologies. This technique minimized the effect of the outliers, physical limitations, structural discrepancies, among others. The computational cost of the proposed techniques is only four times higher than CEKF and nine times smaller than the MHE.

[2]  Rudolph van der Merwe,et al.  The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[3]  Mauro Gamberi,et al.  Motion Analysis System for the digitalization and assessment of manual manufacturing and assembly processes , 2018 .

[4]  Karl-Erik Årzén,et al.  Modeling and optimization with Optimica and JModelica.org - Languages and tools for solving large-scale dynamic optimization problems , 2010, Comput. Chem. Eng..

[5]  James B. Rawlings,et al.  Critical Evaluation of Extended Kalman Filtering and Moving-Horizon Estimation , 2005 .

[6]  Song Huang,et al.  Calculation Algorithm of Tire-Road Friction Coefficient Based on Limited-Memory Adaptive Extended Kalman Filter , 2019 .

[7]  Sirish L. Shah,et al.  Nonlinear Bayesian state estimation: A review of recent developments , 2012 .

[8]  Receding Nonlinear Kalman (RNK) Filter for Nonlinear Constrained State Estimation , 2011 .

[9]  Argimiro Resende Secchi,et al.  State estimators for better bioprocesses operation , 2012 .

[10]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[11]  C. V. Rao,et al.  Constrained process monitoring: Moving‐horizon approach , 2002 .

[12]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[13]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[14]  D. Bonvin,et al.  Application of estimation techniques to batch reactors—III. Modelling refinements which improve the quality of state and parameter estimation , 1990 .

[15]  James B. Rawlings,et al.  Particle filtering and moving horizon estimation , 2006, Comput. Chem. Eng..

[16]  J. Rawlings,et al.  Nonlinear Moving Horizon State Estimation , 1995 .

[17]  Raghunathan Rengaswamy,et al.  A novel approach for benchmarking and assessing the performance of state estimators. , 2018, ISA transactions.

[18]  José Eduardo Weber dos Santos,et al.  Robust Tuning for Classical MPC through the Multi-scenarios Approach , 2019 .

[19]  Jay H. Lee,et al.  Receding Horizon Recursive State Estimation , 1993, 1993 American Control Conference.

[20]  Keck Voon Ling,et al.  Receding horizon recursive state estimation , 1999, IEEE Trans. Autom. Control..

[21]  M.L.J. Hautus,et al.  Controllability and observability conditions of linear autonomous systems , 1969 .

[22]  Masoud Soroush State and parameter estimations and their applications in process control , 1998 .

[23]  Wook Hyun Kwon,et al.  A receding horizon Kalman FIR filter for discrete time-invariant systems , 1999, IEEE Trans. Autom. Control..

[24]  G. Evensen The ensemble Kalman filter for combined state and parameter estimation , 2009, IEEE Control Systems.

[25]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[26]  Marcelo Farenzena,et al.  Comparison of Kalman filter-based approaches for permanent downhole gauge pressure estimation in offshore oil production , 2019 .

[27]  Johannes P. Schlöder,et al.  A real-time algorithm for moving horizon state and parameter estimation , 2011, Comput. Chem. Eng..

[28]  Jay H. Lee,et al.  Constrained linear state estimation - a moving horizon approach , 2001, Autom..

[29]  Lorenz T. Biegler,et al.  Development of robust extended Kalman filter and moving window estimator for simultaneous state and parameter/disturbance estimation , 2018 .

[31]  L. Biegler,et al.  A FAST COMPUTATIONAL FRAMEWORK FOR LARGE-SCALE MOVING HORIZON ESTIMATION , 2007 .

[32]  John D. Hedengren,et al.  GEKKO Optimization Suite , 2018, Processes.

[33]  A. Jazwinski Limited memory optimal filtering , 1968 .

[34]  D. Bonvin,et al.  Application of estimation techniques to batch reactors—II. Experimental studies in state and parameter estimation , 1989 .

[35]  Jorge Otávio Trierweiler,et al.  Multivariable PID controller design for chemical processes by frequency response approximation , 2013 .

[36]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation , 2004 .

[37]  Jorge Otávio Trierweiler,et al.  PDG Pressure Estimation in Offshore Oil Well: Extended Kalman Filter vs. Artificial Neural Networks , 2019 .

[38]  Jay H. Lee,et al.  A moving horizon‐based approach for least‐squares estimation , 1996 .

[39]  R. Gudi,et al.  Multirate state and parameter estimation in an antibiotic fermentation with delayed measurements , 1994, Biotechnology and bioengineering.

[40]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[41]  Claudio Scali,et al.  Parameter estimation in Extended Kalman Filters for quality control in polymerization reactors , 1996 .

[42]  Giorgio Battistelli,et al.  Receding-horizon estimation for discrete-time linear systems , 2003, IEEE Trans. Autom. Control..

[43]  Ravi N. Banavar A game theoretic approach to linear dynamic estimation , 1992 .

[44]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[45]  Sebastian Engell,et al.  Optimization-based state estimation — A comparative study for the batch polycondensation of polyethyleneterephthalate , 2001, 2001 European Control Conference (ECC).

[46]  Marcelo Farenzena,et al.  Fast Offshore Wells Model (FOWM): A practical dynamic model for multiphase oil production systems in deepwater and ultra-deepwater scenarios , 2017, Comput. Chem. Eng..

[47]  Karl Henrik Johansson,et al.  The quadruple-tank process: a multivariable laboratory process with an adjustable zero , 2000, IEEE Trans. Control. Syst. Technol..

[48]  Raghunathan Rengaswamy,et al.  Receding-Horizon Nonlinear Kalman (RNK) Filter for State Estimation , 2013, IEEE Transactions on Automatic Control.