A Proposal for Predicting Missing Values in a Spectrum Dataset Using Supervised Learning

[1]  Tshilidzi Marwala,et al.  Computational intelligence and decision trees for missing data estimation , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[2]  Edgar Acuña,et al.  The Treatment of Missing Values and its Effect on Classifier Accuracy , 2004 .

[3]  V. Kumutha,et al.  An enhanced approach on handling missing values using bagging k-NN imputation , 2013, 2013 International Conference on Computer Communication and Informatics.

[4]  Jerzy W. Grzymala-Busse,et al.  A comparison of three closest fit approaches to missing attribute values in preterm birth data , 2002, Int. J. Intell. Syst..

[5]  Peter Steenkiste,et al.  Supporting Integrated MAC and PHY Software Development for the USRP SDR , 2006, 2006 1st IEEE Workshop on Networking Technologies for Software Defined Radio Networks.

[6]  Ian F. Akyildiz,et al.  NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey , 2006, Comput. Networks.

[7]  Chandrasekhar Kambhampati,et al.  Handling missing values in data mining - A case study of heart failure dataset , 2012, 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery.

[8]  Peter Clark,et al.  The CN2 Induction Algorithm , 1989, Machine Learning.

[9]  Francisco Herrera,et al.  On the choice of the best imputation methods for missing values considering three groups of classification methods , 2012, Knowledge and Information Systems.

[10]  Simon Haykin,et al.  Cognitive radio: brain-empowered wireless communications , 2005, IEEE Journal on Selected Areas in Communications.

[11]  Craig K. Enders,et al.  Applied Missing Data Analysis , 2010 .

[12]  Adrian Kliks,et al.  Experimental spectrum sensing measurements using USRP Software Radio platform and GNU-radio , 2014, 2014 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM).

[13]  Sandeep Kumar Singh,et al.  Empirical evaluation of algorithms to impute missing values for financial dataset , 2014, 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT).

[14]  Rozeha A. Rashid,et al.  Energy detection sensing based on GNU radio and USRP: An analysis study , 2009, 2009 IEEE 9th Malaysia International Conference on Communications (MICC).

[15]  A. Sumathi,et al.  Missing value imputation techniques depth survey and an imputation Algorithm to improve the efficiency of imputation , 2012, 2012 Fourth International Conference on Advanced Computing (ICoAC).

[16]  Ashnil Kumar,et al.  A deep learning technique for imputing missing healthcare data , 2019, 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[17]  Joseph Mitola,et al.  Cognitive Radio An Integrated Agent Architecture for Software Defined Radio , 2000 .

[18]  Nambiraj Suguna,et al.  Predicting Missing Attribute Values Using k-Means Clustering , 2011 .

[19]  G. H. Raisoni,et al.  Ijca Special Issue on " Evolutionary Computation for Optimization Techniques " Ecot, 2010 Multiple Imputation of Missing Data with Genetic Algorithm Based Techniques , 2022 .

[20]  Tu Bao Ho,et al.  Cluster-Based Algorithms for Dealing with Missing Values , 2002, PAKDD.

[21]  Jerzy W. Grzymala-Busse,et al.  On the Unknown Attribute Values in Learning from Examples , 1991, ISMIS.

[22]  Ivan Jordanov,et al.  Column-wise Guided Data Imputation , 2017, ICCS.

[23]  Donald C. Wunsch,et al.  Clustering Data of Mixed Categorical and Numerical Type With Unsupervised Feature Learning , 2015, IEEE Access.

[24]  Bruce A. Fette,et al.  Cognitive Radio Technology , 2006 .