A multiscale method for highly oscillatory ordinary differential equations with resonance

A multiscale method for computing the effective behavior of a class of stiff and highly oscillatory ordinary differential equations (ODEs) is presented. The oscillations may be in resonance with on ...

[1]  Mark Levi,et al.  Geometry and physics of averaging with applications , 1999 .

[2]  E. Weinan Analysis of the heterogeneous multiscale method for ordinary differential equations , 2003 .

[3]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[4]  Eric Vanden Eijnden Numerical techniques for multi-scale dynamical systems with stochastic effects , 2003 .

[5]  D. Haar,et al.  Collected papers of P.L. Kapitza , 1964 .

[6]  Eric Vanden-Eijnden,et al.  A computational strategy for multiscale systems with applications to Lorenz 96 model , 2004 .

[7]  Björn Engquist,et al.  Multiple Time Scale Numerical Methods for the Inverted Pendulum Problem , 2005 .

[8]  J. R. E. O’Malley On Nonlinear Singularly Perturbed Initial Value Problems , 1988 .

[9]  E. Vanden-Eijnden,et al.  Analysis of multiscale methods for stochastic differential equations , 2005 .

[10]  Linda R. Petzold,et al.  Numerical solution of highly oscillatory ordinary differential equations , 1997, Acta Numerica.

[11]  S. SIAMJ.,et al.  FOURTH ORDER CHEBYSHEV METHODS WITH RECURRENCE RELATION∗ , 2002 .

[12]  E. Celledoni Lie group methods , 2009 .

[13]  Eric Vanden-Eijnden,et al.  NUMERICAL TECHNIQUES FOR MULTI-SCALE DYNAMICAL SYSTEMS WITH STOCHASTIC EFFECTS ⁄ , 2003 .

[14]  W. Gautschi Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .

[15]  Ernst Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[16]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[17]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[18]  H. Kreiss Difference Methods for Stiff Ordinary Differential Equations , 1978 .

[19]  H. Weitzner,et al.  Perturbation Methods in Applied Mathematics , 1969 .

[20]  N. Bogolyubov,et al.  Asymptotic Methods in the Theory of Nonlinear Oscillations , 1961 .

[21]  G. L. Browning,et al.  Multiscale Bounded Derivative Initialization for an Arbitrary Domain , 2002 .

[22]  Eric Vanden-Eijnden,et al.  A computational strategy for multiscale chaotic systems with applications to Lorenz 96 model , 2004 .

[23]  Ioannis G. Kevrekidis,et al.  Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue Spectrum , 2002, SIAM J. Sci. Comput..

[24]  Kyle A. Gallivan,et al.  Automatic methods for highly oscillatory ordinary differential equations , 1982 .

[25]  G. Dahlquist Error analysis for a class of methods for stiff non-linear initial value problems , 1976 .

[26]  J. Cole,et al.  Multiple Scale and Singular Perturbation Methods , 1996 .

[27]  G. Dahlquist Stability and error bounds in the numerical integration of ordinary differential equations , 1961 .

[28]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[29]  Robert D. Skeel,et al.  Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..

[30]  Björn Engquist,et al.  Heterogeneous multiscale methods for stiff ordinary differential equations , 2005, Math. Comput..

[31]  E. Hairer,et al.  Stiff and differential-algebraic problems , 1991 .

[32]  G. Dahlquist A special stability problem for linear multistep methods , 1963 .

[33]  Heinz-Otto Kreiss,et al.  Problems with different time scales , 1992, Acta Numerica.

[34]  R. Scheid The Accurate Numerical Solution of Highly Oscillatory Ordinary Differential Equations , 1983 .

[35]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[36]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[37]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[38]  Björn Engquist,et al.  Numerical Multiscale Methods for Coupled Oscillators , 2009, Multiscale Model. Simul..

[39]  Marlis Hochbruck,et al.  Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..

[40]  G. Dahlquist Convergence and stability in the numerical integration of ordinary differential equations , 1956 .

[41]  J. Laskar Large-scale chaos in the solar system. , 1994 .