A new class of monomial bent functions

We study the Boolean functions on F2En, n = 6r, of the form x rarr Tr (lambdaxd) with d = 22r + 2r + 1. Our main result is the characterization of those lambda for which they are bent

[1]  Gregor Leander,et al.  Monomial bent functions , 2006, IEEE Transactions on Information Theory.

[2]  Rudolf Lide,et al.  Finite fields , 1983 .

[3]  J. Dillon Elementary Hadamard Difference Sets , 1974 .

[4]  Guang Gong,et al.  Constructions of quadratic bent functions in polynomial forms , 2006, IEEE Transactions on Information Theory.

[5]  Anne Canteaut,et al.  Almost Perfect Nonlinear functions , 2005 .

[6]  R. McEliece Finite Fields for Computer Scientists and Engineers , 1986 .

[7]  Robert L. McFarland,et al.  A Family of Difference Sets in Non-cyclic Groups , 1973, J. Comb. Theory A.

[8]  Robert W. Fitzgerald,et al.  Highly degenerate quadratic forms over finite fields of characteristic 2 , 2005, Finite Fields Their Appl..

[9]  Anne Canteaut,et al.  Finding nonnormal bent functions , 2006, Discret. Appl. Math..

[10]  Pascale Charpin,et al.  On bent and semi-bent quadratic Boolean functions , 2005, IEEE Transactions on Information Theory.

[11]  Anne Canteaut,et al.  Decomposing bent functions , 2002, Proceedings IEEE International Symposium on Information Theory,.

[12]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[13]  G. Lachaud,et al.  The weights of the orthogonals of the extended quadratic binary Goppa codes , 1990, IEEE Trans. Inf. Theory.

[14]  Claude Carlet,et al.  Recursive Lower Bounds on the Nonlinearity Profile of Boolean Functions and Their Applications , 2008, IEEE Transactions on Information Theory.

[15]  Anne Canteaut,et al.  On cryptographic properties of the cosets of R(1, m) , 2001, IEEE Trans. Inf. Theory.

[16]  Claude Carlet,et al.  Hyper-bent functions and cyclic codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[17]  Hans Dobbertin,et al.  New cyclic difference sets with Singer parameters , 2004, Finite Fields Their Appl..

[18]  Thierry P. Berger,et al.  On Almost Perfect Nonlinear Functions Over$mmb F_2^n$ , 2006, IEEE Transactions on Information Theory.

[19]  Gregor Leander,et al.  Bent Functions With 2r Niho Exponents , 2006, IEEE Trans. Inf. Theory.