Disciplined Convex Stochastic Programming: A New Framework for Stochastic Optimization
暂无分享,去创建一个
Stephen P. Boyd | Steven Diamond | J. Zico Kolter | Alnur Ali | J. Z. Kolter | Steven Diamond | Alnur Ali
[1] Stephen P. Boyd,et al. Disciplined Convex Programming , 2006 .
[2] Alexander Shapiro,et al. Lectures on Stochastic Programming - Modeling and Theory, Second Edition , 2014, MOS-SIAM Series on Optimization.
[3] Roger J.-B. Wets,et al. Stochastic programming 84 , 1986 .
[4] Antonio Alonso Ayuso,et al. Introduction to Stochastic Programming , 2009 .
[5] W. Marsden. I and J , 2012 .
[6] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[7] R. Wets,et al. Stochastic programming , 1989 .
[8] David Kendrick,et al. GAMS, a user's guide , 1988, SGNM.
[9] Johan Efberg,et al. YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .
[10] J. Spall. STOCHASTIC OPTIMIZATION , 2002 .
[11] R. Rockafellar,et al. Conditional Value-at-Risk for General Loss Distributions , 2001 .
[12] Gautam Mitra,et al. Extending Algebraic Modelling Languages for Stochastic Programming , 2009, INFORMS J. Comput..
[13] William T. Ziemba,et al. Applications of Stochastic Programming , 2005 .
[14] David L. Woodruff,et al. PySP: modeling and solving stochastic programs in Python , 2012, Mathematical Programming Computation.
[15] David Huard,et al. PyMC: Bayesian Stochastic Modelling in Python. , 2010, Journal of statistical software.
[16] Stephen P. Boyd,et al. ECOS: An SOCP solver for embedded systems , 2013, 2013 European Control Conference (ECC).
[17] Stanislav Uryasev,et al. Conditional Value-at-Risk for General Loss Distributions , 2002 .
[18] Alexes Butler,et al. Microsoft Research Cambridge , 2013 .
[19] Alexander Shapiro,et al. Lectures on Stochastic Programming: Modeling and Theory , 2009 .
[20] Stephen P. Boyd,et al. Convex Optimization in Julia , 2014, 2014 First Workshop for High Performance Technical Computing in Dynamic Languages.
[21] Matt J. Kusner,et al. Classifier cascades and trees for minimizing feature evaluation cost , 2014, J. Mach. Learn. Res..
[22] Soumyadip Ghosh,et al. Two-stage stochastic optimization for optimal power flow under renewable generation uncertainty , 2014, ACM Trans. Model. Comput. Simul..
[23] Vikash K. Mansinghka. Church : a language for generative models with non-parametric memoization and approximate inference , 2008 .
[24] George B. Dantzig,et al. Linear Programming Under Uncertainty , 2004, Manag. Sci..
[25] J. Lofberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).
[26] Joshua B. Tenenbaum,et al. Church: a language for generative models , 2008, UAI.
[27] Stephen P. Boyd,et al. CVXPY: A Python-Embedded Modeling Language for Convex Optimization , 2016, J. Mach. Learn. Res..
[28] Chiranjib Bhattacharyya,et al. Chance constrained uncertain classification via robust optimization , 2011, Math. Program..
[29] Alexander Shapiro,et al. Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..
[30] A. Pfeffer,et al. Figaro : An Object-Oriented Probabilistic Programming Language , 2009 .