PREDICTIVE CAPABILITY OF MHD STABILITY LIMITS IN HIGH PERFORMANCE DIII-D DISCHARGES

Results from an array of theoretical and computational tools developed to treat the instabilities of most interest for high performance tokamak discharges are described. The theory and experimental diagnostic capabilities have now been developed to the point where detailed predictions can be productively tested so that competing effects can be isolated and either eliminated or confirmed. The linear MHD stability predictions using high quality discharge equilibrium reconstructions are tested against the observations for the principal limiting phenomena in DIII-D: L mode negative central shear (NCS) disruptions, H mode NCS edge instabilities, and tearing and resistive wall modes (RWMs) in long pulse discharges. In the case of predominantly ideal plasma MHD instabilities, agreement between the code predictions and experimentally observed stability limits and thresholds can now be obtained to within several per cent, and the predicted fluctuations and growth rates to within the estimated experimental errors. Edge instabilities can be explained by a new model for edge localized modes as predominantly ideal instabilities with low to intermediate toroidal mode number. Accurate ideal calculations are critical to demonstrating RWM stabilization by plasma rotation, and the ideal eigenfunctions provide a good representation of the RWM structure when the plasma rotation slows. Ideal eigenfunctions can then be used to predict stabilization using active feedback. For non-ideal modes, the agreement in some cases is promising. Δ' calculations, for example, indicate that some discharges are linearly unstable to classical tearing modes, consistent with the observed growth of islands in those discharges. Nevertheless, there is still a great deal of improvement required before the non-ideal predictive capability can routinely approach levels similar to those for the ideal comparisons.

[1]  D. Van Eester,et al.  Re-evaluation of ITER ion cyclotron operating scenarios , 2002 .

[2]  M. Okabayashi,et al.  Theoretical modelling of the feedback stabilization of external MHD modes in toroidal geometry , 2002 .

[3]  E. D. Fredrickson,et al.  Resistive wall mode dynamics and active feedback control in DIII-D , 2001 .

[4]  G. Fu,et al.  The toroidicity-induced Alfvén eigenmode structure in DIII-D: Implications of soft x-ray and beam-ion loss data , 2001 .

[5]  A. Boozer Error field amplification and rotation damping in tokamak plasmas. , 2001, Physical review letters.

[6]  G. Gantenbein,et al.  Neoclassical tearing modes and their stabilization by electron cyclotron current drive in ASDEX Upgrade , 2001 .

[7]  Gerald A. Navratil,et al.  Modeling of active control of external magnetohydrodynamic instabilities , 2001 .

[8]  G. J. Jackson,et al.  Dependence of edge stability on plasma shape and local pressure gradients in the DIII-D and JT-60U tokamaks , 2001 .

[9]  K. Kajiwara,et al.  Complete stabilization of a tearing mode in steady state high-βp H-mode discharges by the first harmonic electron cyclotron heating/current drive on JT-60U , 2000 .

[10]  L. L. Lao,et al.  LONG-PULSE, HIGH-PERFORMANCE DISCHARGES IN THE DIII-D TOKAMAK , 2000 .

[11]  J. Greene,et al.  A new formulation of the resistive magnetohydrodynamics stability problem for finite β toroidal plasmas , 2000 .

[12]  E. D. Fredrickson,et al.  Control of the resistive wall mode in advanced tokamak plasmas on DIII-D , 2000 .

[13]  L. L. Lao,et al.  Modification of tokamak edge instability character through control of ballooning mode second stability regime accessibility , 2000 .

[14]  L. Lao,et al.  Modification of high mode pedestal instabilities in the DIII-D tokamak , 2000 .

[15]  C. G. Gimblett,et al.  Torque balance and rotational stabilization of the resistive wall mode , 2000 .

[16]  L. L. Lao,et al.  The Effect of Plasma Shape on H-Mode Pedestal Characteristics on DIII-D , 1999 .

[17]  E. J. Strait,et al.  MHD mode identification of tokamak plasmas from Mirnov signals , 1999 .

[18]  L. Lao,et al.  On the operational ideal magnetohydrodynamic β limit in sawtoothing discharges , 1999 .

[19]  E. Strait,et al.  Growth of ideal magnetohydrodynamic modes driven slowly through their instability threshold: Application to disruption precursors , 1999 .

[20]  L. Lao,et al.  Ideal magnetohydrodynamic stability of the tokamak high-confinement-mode edge region , 1999 .

[21]  R. Miller,et al.  Improved magnetohydrodynamic stability through optimization of higher order moments in cross-section shape of tokamaks , 1999 .

[22]  L. L. Lao,et al.  Direct Observation of the Resistive Wall Mode in a Tokamak and Its Interaction with Plasma Rotation , 1999 .

[23]  L. Lao,et al.  EFFECTS OF PLASMA SHAPE AND PROFILES ON EDGE STABILITY IN DIII-D , 1998 .

[24]  L. L. Lao,et al.  Stabilization of the external kink and control of the resistive wall mode in tokamaks , 1998 .

[25]  Robert L. Miller,et al.  Synergism between cross-section and profile shaping in beta optimization of tokamak equilibria with negative central shear , 1998 .

[26]  L. L. Lao,et al.  Direct Measurement of the Radial Electric Field in Tokamak Plasmas using the Stark Effect , 1997 .

[27]  H. Zohm,et al.  Analysis of coupled MHD modes with Mirnov probes in ASDEX Upgrade , 1997 .

[28]  H. Zohm,et al.  Stabilization of neoclassical tearing modes by electron cyclotron current drive , 1997 .

[29]  James D. Callen,et al.  On the stabilization of neoclassical magnetohydrodynamic tearing modes using localized current drive or heating , 1997 .

[30]  M. S. Chance,et al.  Vacuum calculations in azimuthally symmetric geometry , 1997 .

[31]  Robert L. Miller,et al.  Stability of negative central magnetic shear discharges in the DIII-D tokamak , 1997 .

[32]  Lao,et al.  Resistive Interchange Modes in Negative Central Shear Tokamaks with Peaked Pressure Profiles. , 1996, Physical review letters.

[33]  L. L. Lao,et al.  Rotational and magnetic shear stabilization of magnetohydrodynamic modes and turbulence in DIII‐D high performance discharges , 1996 .

[34]  M. Mauel,et al.  Demonstration of high‐performance negative central magnetic shear discharges in the DIII‐D tokamak , 1996 .

[35]  H. R. Wilson,et al.  Threshold for neoclassical magnetic islands in a low collision frequency tokamak , 1996 .

[36]  L. L. Lao,et al.  Wall stabilization of high beta plasmas in DIII-D , 1995 .

[37]  Lao,et al.  Wall stabilization of high beta tokamak discharges in DIII-D. , 1995, Physical review letters.

[38]  A. Bondeson,et al.  Linear Stability of Resistive MHD Modes , 1994 .

[39]  J. Greene,et al.  Stability of tearing modes in finite‐beta plasmas , 1994 .

[40]  E. J. Strait,et al.  Stability of high beta tokamak plasmas , 1994 .

[41]  L. L. Lao,et al.  Global Alfvén modes: Theory and experiment* , 1993 .

[42]  Lao,et al.  High internal inductance improved confinement H-mode discharges obtained with an elongation ramp technique in the DIII-D tokamak. , 1993, Physical review letters.

[43]  L. Lao,et al.  Polarimetry of motional Stark effect and determination of current profiles in DIII-D (invited) , 1992 .

[44]  L. Lao,et al.  Sensitivity of the kink instability to the pressure profile , 1992 .

[45]  L. L. Lao,et al.  Equilibrium analysis of current profiles in tokamaks , 1990 .

[46]  L. Lao,et al.  Global resistive MHD calculations for high beta divertor plasmas in the DIII-D tokamak , 1989 .

[47]  Low-n ideal MHD stability of tokamaks : current and beta limits , 1989 .

[48]  Lao,et al.  Study of giant edge-localized modes in DIII-D and comparison with ballooning theory. , 1988, Physical review letters.

[49]  J. Manickam,et al.  MHD analysis of high ⟨βt⟩ disruptions in PBX , 1988 .

[50]  R. Gruber,et al.  β limits in H -mode-like discharges , 1986 .

[51]  S. Jardin,et al.  Numerical solution of the resistive magnetohydrodynamic boundary layer equations , 1984 .

[52]  R. Gruber,et al.  MHD-limits to plasma confinement , 1984 .

[53]  W. Schneider,et al.  Erato Stability Code , 1984 .

[54]  V. Chan,et al.  Stabilization of tearing modes in tokamaks using electron cyclotron heating , 1982 .

[55]  P. Merkel,et al.  Hera and other extensions of Erato , 1981 .

[56]  L. C. Bernard,et al.  GATO: An MHD stability code for axisymmetric plasmas with internal separatrices , 1981 .

[57]  J. Wesson Hydromagnetic stability of tokamaks , 1978 .

[58]  John L. Johnson,et al.  Resistive instabilities in a tokamak , 1975 .

[59]  John L. Johnson,et al.  Resistive instabilities in general toroidal plasma configurations , 1975 .