A fourth‐order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq‐type equations. Part I: model development and analysis

A high-order finite volume scheme is developed to numerically integrate a fully nonlinear and weakly dispersive set of Boussinesq-type equations (the so-called Serre equations) (J. Fluid Mech. 1987; 176:117–134; Surveys Geophys. 2004; 25(3–4):315–337). The choice of this discretization strategy is motivated by the fact that this particular set of equations is recasted in a convenient quasi-conservative form. Cell face values are reconstructed using implicit compact schemes (J. Comput. Phys. 1999; 156:137–180; J. Comput. Phys. 2004; 198:535–566) and time integration is performed with the help of a four-stage Runge–Kutta method. Numerical properties of the proposed scheme are investigated both, analytically using linear spectral analysis, and numerically for highly nonlinear cases. The numerical analysis indicates that the newly developed scheme has wider stability regions and better spectral resolution than most of the previously published numerical methods used to handle equivalent set of equations. Moreover, it was also noticed that the use of mixed-order strategies to discretize convective and dispersive terms may result in an important overall reduction of the spectral resolution of the scheme. Additionally, there is some numerical evidence, which seems to indicate that the incorporation of a high-order dispersion correction term as given by Madsen et al. (Coastal Eng. 1991; 15:371–388) may introduce instability in the system. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  P. Sergent,et al.  Linear analysis of a new type of extended Boussinesq model , 2004 .

[2]  Xiaolin Zhong,et al.  Derivation of high-order compact finite difference schemes for non-uniform grid using polynomial interpolation , 2005 .

[3]  G. Wei,et al.  A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves , 1995, Journal of Fluid Mechanics.

[4]  GuizieN. Katell,et al.  Accuracy of solitary wave generation by a piston wave maker. , 2002 .

[5]  Peter Stansby Solitary wave run up and overtopping by a semi-implicit finite-volume shallow-water Boussinesq model , 2003 .

[6]  Michael B. Abbott,et al.  Accuracy of Short-Wave Numerical Models , 1984 .

[7]  Ge Wei,et al.  A fully nonlinear Boussinesq model for surface waves. Part 2. Extension to O(kh)4 , 2000, Journal of Fluid Mechanics.

[8]  I. A. Svendsen,et al.  The flow in surf-zone waves , 2000 .

[9]  D. Peregrine Long waves on a beach , 1967, Journal of Fluid Mechanics.

[10]  J. Boussinesq,et al.  Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. , 1872 .

[11]  E. Barthélemy,et al.  Nonlinear Shallow Water Theories for Coastal Waves , 2004 .

[12]  James T. Kirby,et al.  Wave evolution over submerged sills: tests of a high-order Boussinesq model , 1999 .

[13]  M.Y. Hussaini,et al.  Low-Dissipation and Low-Dispersion Runge-Kutta Schemes for Computational Acoustics , 1994 .

[14]  M. W. Dingemans,et al.  Water Wave Propagation Over Uneven Bottoms , 1997 .

[15]  Brett F. Sanders,et al.  Finite-Volume Models for Unidirectional, Nonlinear, Dispersive Waves , 2002 .

[16]  Seung-Buhm Woo,et al.  A Petrov–Galerkin finite element model for one‐dimensional fully non‐linear and weakly dispersive wave propagation , 2001 .

[17]  Rolf Deigaard,et al.  A Boussinesq model for waves breaking in shallow water , 1993 .

[18]  Robert A. Dalrymple,et al.  A fully nonlinear Boussinesq model in generalized curvilinear coordinates , 2001 .

[19]  Numerical solution of the generalized Serre equations with the MacCormack finite-difference scheme , 1993 .

[20]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[21]  F. Serre,et al.  CONTRIBUTION À L'ÉTUDE DES ÉCOULEMENTS PERMANENTS ET VARIABLES DANS LES CANAUX , 1953 .

[22]  H. Schäffer,et al.  Higher–order Boussinesq–type equations for surface gravity waves: derivation and analysis , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  Harry B. Bingham,et al.  Numerical solutions of fully non‐linear and highly dispersive Boussinesq equations in two horizontal dimensions , 2004 .

[24]  P. A. Madsen,et al.  A new form of the Boussinesq equations with improved linear dispersion characteristics , 1991 .

[25]  Martin Berzins,et al.  A finite element method for the two‐dimensional extended Boussinesq equations , 2002 .

[26]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[27]  Martin Berzins,et al.  A FINITE ELEMENT METHOD FOR THE ONE-DIMENSIONAL EXTENDED BOUSSINESQ EQUATIONS , 1999 .

[28]  Martine Baelmans,et al.  A finite volume formulation of compact central schemes on arbitrary structured grids , 2004 .

[29]  Résolution numérique en volumes finis d'un système d'équations de Serre étendu , 2005 .

[30]  O. Nwogu Alternative form of Boussinesq equations for nearshore wave propagation , 1993 .

[31]  H. Schäffer,et al.  Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  William H. Press,et al.  Numerical Recipes in Fortran 77: The Art of Scientific Computing 2nd Editionn - Volume 1 of Fortran Numerical Recipes , 1992 .

[33]  K. S. Erduran,et al.  Hybrid finite‐volume finite‐difference scheme for the solution of Boussinesq equations , 2005 .

[34]  J. S. Antunes do Carmo,et al.  Surface waves propagation in shallow water : a finite element model , 1993 .

[35]  J. A. Zelt The run-up of nonbreaking and breaking solitary waves , 1991 .

[36]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[37]  G. Whitham Linear and non linear waves , 1974 .

[38]  P. Liu,et al.  A two-layer approach to wave modelling , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  G. Wei,et al.  Time-Dependent Numerical Code for Extended Boussinesq Equations , 1995 .

[40]  D. Durran Numerical methods for wave equations in geophysical fluid dynamics , 1999 .

[41]  J. Kirby,et al.  BOUSSINESQ MODELING OF WAVE TRANSFORMATION, BREAKING, AND RUNUP. II: 2D , 2000 .

[42]  Philip L.-F. Liu,et al.  Finite-Element Model for Modified Boussinesq Equations. II: Applications to Nonlinear Harbor Oscillations , 2004 .

[43]  Marcelo H. Kobayashi,et al.  Regular Article: On a Class of Padé Finite Volume Methods , 1999 .

[44]  M A U R ´ I C I,et al.  A Fully Nonlinear Boussinesq Model for Surface Waves. Part 2. Extension to O(kh) 4 , 2000 .

[45]  C. Su,et al.  On head-on collisions between two solitary waves , 1979, Journal of Fluid Mechanics.

[46]  James M. Witting,et al.  A Unified Model for the Evolution of Nonlinear Water Waves , 1982 .

[47]  E. Toro Shock-Capturing Methods for Free-Surface Shallow Flows , 2001 .

[48]  Dominique P. Renouard,et al.  Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle , 1987, Journal of Fluid Mechanics.