Scalable Quantum Computation of Highly Excited Eigenstates with Spectral Transforms

We propose a natural application of Quantum Linear Systems Problem (QLSP) solvers such as the HHL algorithm to efficiently prepare highly excited interior eigenstates of physical Hamiltonians in a variational manner. This is enabled by the efficient computation of inverse expectation values, taking advantage of the QLSP solvers' exponentially better scaling in problem size without concealing exponentially costly pre/post-processing steps that usually accompanies it. We detail implementations of this scheme for both fault-tolerant and near-term quantum computers, analyse their efficiency and implementability, and discuss applications and simulation results in many-body physics and quantum chemistry that demonstrate its superior effectiveness and scalability over existing approaches.

[1]  Harper R. Grimsley,et al.  ADAPT-VQE is insensitive to rough parameter landscapes and barren plateaus , 2022, 2204.07179.

[2]  George H. Booth,et al.  The Variational Quantum Eigensolver: A review of methods and best practices , 2021, Physics Reports.

[3]  Sukin Sim,et al.  Noisy intermediate-scale quantum (NISQ) algorithms , 2021, Reviews of Modern Physics.

[4]  Almudena Carrera Vazquez,et al.  Enhancing the Quantum Linear Systems Algorithm Using Richardson Extrapolation , 2020, ACM Transactions on Quantum Computing.

[5]  Marco Pistoia,et al.  Hybrid HHL with Dynamic Quantum Circuits on Real Hardware , 2021, 2110.15958.

[6]  P. P. Orth,et al.  Adaptive variational quantum eigensolvers for highly excited states , 2021, Physical Review B.

[7]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[8]  Peter Coveney,et al.  Implementation of measurement reduction for the variational quantum eigensolver , 2020, Physical Review Research.

[9]  P. Rebentrost,et al.  Near-term quantum algorithms for linear systems of equations with regression loss functions , 2019, New Journal of Physics.

[10]  R. Somma,et al.  Complexity of Quantum State Verification in the Quantum Linear Systems Problem , 2020, 2007.15698.

[11]  P. Marquetand,et al.  Machine Learning for Electronically Excited States of Molecules , 2020, Chemical reviews.

[12]  Patrick J. Coles,et al.  Variational Quantum Linear Solver. , 2020 .

[13]  M. Lewenstein,et al.  Polynomially Filtered Exact Diagonalization Approach to Many-Body Localization. , 2020, Physical review letters.

[14]  Patrick J. Coles,et al.  Operator Sampling for Shot-frugal Optimization in Variational Algorithms , 2020, 2004.06252.

[15]  Lin Lin,et al.  Optimal polynomial based quantum eigenstate filtering with application to solving quantum linear systems , 2019, Quantum.

[16]  G. Greene‐Diniz,et al.  Generalized unitary coupled cluster excitations for multireference molecular states optimized by the variational quantum eigensolver , 2019, International Journal of Quantum Chemistry.

[17]  Chao Yang,et al.  A Shift Selection Strategy for Parallel Shift-invert Spectrum Slicing in Symmetric Self-consistent Eigenvalue Computation , 2019, ACM Trans. Math. Softw..

[18]  Harper R. Grimsley,et al.  Qubit-ADAPT-VQE: An Adaptive Algorithm for Constructing Hardware-Efficient Ansätze on a Quantum Processor , 2019, 1911.10205.

[19]  Simon C. Benjamin,et al.  Variational Circuit Compiler for Quantum Error Correction , 2019, Physical Review Applied.

[20]  J. Eisert,et al.  Quantum certification and benchmarking , 2019, Nature Reviews Physics.

[21]  Yuya O. Nakagawa,et al.  Calculation of the Green's function on near-term quantum computers , 2019, 1909.12250.

[22]  Nathan Wiebe,et al.  Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers , 2019, npj Quantum Information.

[23]  Tzu-Ching Yen,et al.  Unitary partitioning approach to the measurement problem in the Variational Quantum Eigensolver method. , 2019, Journal of chemical theory and computation.

[24]  Edward Grant,et al.  An initialization strategy for addressing barren plateaus in parametrized quantum circuits , 2019, Quantum.

[25]  T. Martínez,et al.  Quantum Computation of Electronic Transitions Using a Variational Quantum Eigensolver. , 2019, Physical review letters.

[26]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.

[27]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[28]  Ken M. Nakanishi,et al.  Subspace-search variational quantum eigensolver for excited states , 2018, Physical Review Research.

[29]  K. B. Whaley,et al.  Generalized Unitary Coupled Cluster Wave functions for Quantum Computation. , 2018, Journal of chemical theory and computation.

[30]  Nathan Wiebe,et al.  Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics , 2018, STOC.

[31]  S. Brierley,et al.  Variational Quantum Computation of Excited States , 2018, Quantum.

[32]  S. Brierley,et al.  Accelerated Variational Quantum Eigensolver. , 2018, Physical review letters.

[33]  D. Abanin Many-body localization, thermalization, and entanglement , 2019 .

[34]  J. E. Román,et al.  SIESTA‐SIPs: Massively parallel spectrum‐slicing eigensolver for an ab initio molecular dynamics package , 2018, J. Comput. Chem..

[35]  F. Alet,et al.  Shift-invert diagonalization of large many-body localizing spin chains , 2018, SciPost Physics.

[36]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[37]  J. O'Brien,et al.  Witnessing eigenstates for quantum simulation of Hamiltonian spectra , 2016, Science Advances.

[38]  F. Fillion-Gourdeau,et al.  Algorithm for the solution of the Dirac equation on digital quantum computers , 2016, 1611.05484.

[39]  I. Chuang,et al.  Optimal Hamiltonian Simulation by Quantum Signal Processing. , 2016, Physical review letters.

[40]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[41]  J. Carter,et al.  Hybrid Quantum-Classical Hierarchy for Mitigation of Decoherence and Determination of Excited States , 2016, 1603.05681.

[42]  Rolando D. Somma,et al.  Quantum algorithms for Gibbs sampling and hitting-time estimation , 2016, Quantum Inf. Comput..

[43]  Andrew M. Childs,et al.  Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..

[44]  B. Clark,et al.  Finding Matrix Product State Representations of Highly Excited Eigenstates of Many-Body Localized Hamiltonians. , 2015, Physical review letters.

[45]  Guoming Wang,et al.  Efficient quantum algorithms for analyzing large sparse electrical networks , 2013, Quantum Inf. Comput..

[46]  Hong Zhang,et al.  Shift‐and‐invert parallel spectral transformation eigensolver: Massively parallel performance for density‐functional based tight‐binding , 2016, J. Comput. Chem..

[47]  Gerhard Wellein,et al.  High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations , 2015, J. Comput. Phys..

[48]  Frank Pollmann,et al.  Obtaining Highly Excited Eigenstates of Many-Body Localized Hamiltonians by the Density Matrix Renormalization Group Approach. , 2015, Physical review letters.

[49]  Aaron C. E. Lee,et al.  Many-body localization in a quantum simulator with programmable random disorder , 2015, Nature Physics.

[50]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[51]  Andrew M. Childs,et al.  Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[52]  Bela Bauer,et al.  Analyzing Many-Body Localization with a Quantum Computer , 2014, 1407.1840.

[53]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[54]  K. Hagino,et al.  Application of the inverse Hamiltonian method to Hartree-Fock-Bogoliubov calculations , 2013, 1304.4697.

[55]  B. D. Clader,et al.  Preconditioned quantum linear system algorithm. , 2013, Physical review letters.

[56]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[57]  Daniel Escudero,et al.  Progress and challenges in the calculation of electronic excited states. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[58]  K. Hagino,et al.  Iterative solution of a Dirac equation with an inverse Hamiltonian method , 2010, 1008.4995.

[59]  Steve Mullett,et al.  Read the fine print. , 2009, RN.

[60]  Eric Polizzi,et al.  A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.

[61]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[62]  Jonathan J. Dorando,et al.  Targeted excited state algorithms. , 2007, The Journal of chemical physics.

[63]  Mathieu Lewin,et al.  Variational methods in relativistic quantum mechanics , 2007, 0706.3309.

[64]  E. Knill,et al.  Optimal quantum measurements of expectation values of observables , 2006, quant-ph/0607019.

[65]  Mikko Möttönen,et al.  Transformation of quantum states using uniformly controlled rotations , 2004, Quantum Inf. Comput..

[66]  T. Sakurai,et al.  A projection method for generalized eigenvalue problems using numerical integration , 2003 .

[67]  G. Cerullo,et al.  Photosynthetic Light Harvesting by Carotenoids: Detection of an Intermediate Excited State , 2002, Science.

[68]  Johannes Herbst,et al.  Femtosecond Infrared Spectroscopy of Bacteriorhodopsin Chromophore Isomerization , 2002, Science.

[69]  M. Schreiber,et al.  The Anderson Model of Localization: A Challenge for Modern Eigenvalue Methods , 1998, SIAM J. Sci. Comput..

[70]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[71]  Hill,et al.  A solution to the problem of variational collapse for the one-particle Dirac equation. , 1994, Physical review letters.