Tuning parameter selection in sparse regression modeling
暂无分享,去创建一个
[1] L. Breiman. Heuristics of instability and stabilization in model selection , 1996 .
[2] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[3] C. Stein. Estimation of the Mean of a Multivariate Normal Distribution , 1981 .
[4] Chenlei Leng,et al. Shrinkage tuning parameter selection with a diverging number of parameters , 2008 .
[5] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[6] R. Tibshirani,et al. PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.
[7] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.
[8] R. Tibshirani,et al. The solution path of the generalized lasso , 2010, 1005.1971.
[9] N. Sugiura. Further analysts of the data by akaike' s information criterion and the finite corrections , 1978 .
[10] P. Zhao,et al. The composite absolute penalties family for grouped and hierarchical variable selection , 2009, 0909.0411.
[11] B. Efron. How Biased is the Apparent Error Rate of a Prediction Rule , 1986 .
[12] Hideo Hirose,et al. NNRMLR: A Combined Method of Nearest Neighbor Regression and Multiple Linear Regression , 2012, 2012 IIAI International Conference on Advanced Applied Informatics.
[13] Bertrand Michel,et al. Slope heuristics: overview and implementation , 2011, Statistics and Computing.
[14] C. L. Mallows. Some comments on C_p , 1973 .
[15] Susan A. Murphy,et al. Monographs on statistics and applied probability , 1990 .
[16] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[17] Clifford M. Hurvich,et al. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion , 1998 .
[18] Xiaotong Shen,et al. Adaptive Model Selection and Assessment for Exponential Family Distributions , 2004, Technometrics.
[19] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[20] Trevor Hastie,et al. Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.
[21] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[22] Yixin Fang,et al. A note on the generalized degrees of freedom under the L1 loss function , 2011 .
[23] R. Tibshirani,et al. On the “degrees of freedom” of the lasso , 2007, 0712.0881.
[24] J. Friedman,et al. A Statistical View of Some Chemometrics Regression Tools , 1993 .
[25] G. Kitagawa,et al. Information Criteria and Statistical Modeling , 2007 .
[26] M. Yuan,et al. Model selection and estimation in regression with grouped variables , 2006 .
[27] Jianming Ye. On Measuring and Correcting the Effects of Data Mining and Model Selection , 1998 .
[28] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[29] Wenjiang J. Fu. Penalized Regressions: The Bridge versus the Lasso , 1998 .
[30] Kengo Kato,et al. On the degrees of freedom in shrinkage estimation , 2009, J. Multivar. Anal..
[31] J. Friedman. Fast sparse regression and classification , 2012 .
[32] T. Hastie,et al. SparseNet: Coordinate Descent With Nonconvex Penalties , 2011, Journal of the American Statistical Association.
[33] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[34] Stephen P. Boyd,et al. Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.
[35] Xiaotong Shen,et al. Adaptive Model Selection , 2002 .
[36] Runze Li,et al. Tuning parameter selectors for the smoothly clipped absolute deviation method. , 2007, Biometrika.
[37] C. Mallows. Some Comments on Cp , 2000, Technometrics.
[38] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[39] B. Efron. The Estimation of Prediction Error , 2004 .
[40] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .