Application of room temperature ionic liquids to Li batteries

[1]  Jinqiang Xu,et al.  Additive-containing ionic liquid electrolytes for secondary lithium battery , 2006 .

[2]  Ilias Belharouak,et al.  Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2 , 2006 .

[3]  Akira Usami,et al.  Reversibility of Lithium Secondary Batteries Using a Room-Temperature Ionic Liquid Mixture and Lithium Metal , 2005 .

[4]  Takeshi Abe,et al.  Temperature dependence of the electrochemical behavior of LiCoO2 in quaternary ammonium-based ionic liquid electrolyte , 2005 .

[5]  Doron Aurbach,et al.  Calorimetric studies of the thermal stability of electrolyte solutions based on alkyl carbonates and the effect of the contact with lithium , 2005 .

[6]  Y. Sakurai,et al.  Alkylated imidazolium salt electrolyte for lithium cells , 2005 .

[7]  H. Sakaebe,et al.  Discharge–charge properties of Li/LiCoO2 cell using room temperature ionic liquids (RTILs) based on quaternary ammonium cation – Effect of the structure , 2005 .

[8]  J. Yamaki,et al.  Cyano-containing quaternary ammonium-based ionic liquid as a ‘co-solvent’ for lithium battery electrolyte , 2005 .

[9]  Hajime Matsumoto,et al.  Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte , 2005 .

[10]  Petr Novák,et al.  Stabilisation of lithiated graphite in an electrolyte based on ionic liquids: an electrochemical and scanning electron microscopy study , 2005 .

[11]  Michel Armand,et al.  Room temperature molten salts as lithium battery electrolyte , 2004 .

[12]  Anthony F. Hollenkamp,et al.  High Lithium Metal Cycling Efficiency in a Room-Temperature Ionic Liquid , 2004 .

[13]  Hajime Matsumoto,et al.  N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery , 2003 .

[14]  Y. Aihara,et al.  Liquid and Polymer Gel Electrolytes for Lithium Batteries Composed of Room-Temperature Molten Salt Doped by Lithium Salt , 2003 .

[15]  Y. Baba,et al.  Thermal stability of LixCoO2 cathode for lithium ion battery , 2002 .

[16]  D. D. MacNeil,et al.  The Reaction of Charged Cathodes with Nonaqueous Solvents and Electrolytes: I. Li0.5CoO2 , 2001 .

[17]  H. Matsumoto,et al.  Highly Conductive Room Temperature Molten Salts Based on Small Trimethylalkylammonium Cations and Bis(trifluoromethylsulfonyl)imide , 2000 .

[18]  M. Ishikawa,et al.  Electrochemical control of a Li metal anode interface: improvement of Li cyclability by inorganic additives compatible with electrolytes☆ , 1999 .

[19]  Joan Fuller,et al.  The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate : Electrochemical couples and physical properties , 1997 .

[20]  K. Kanamura,et al.  Study of the Surface Composition of Highly Smooth Lithium Deposited in Various Carbonate Electrolytes Containing HF , 1997 .

[21]  P. Trulove,et al.  Electrochemistry of room-temperature chloroaluminate molten salts at graphitic and nongraphitic electrodes , 1996 .

[22]  P. Willmann,et al.  Correlation between cycling efficiency and surface morphology of electrodeposited lithium. Effect of fluorinated surface active additives , 1996 .

[23]  J. Dahn,et al.  Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells , 1994 .

[24]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[25]  大野 弘幸,et al.  Electrochemical aspects of ionic liquids , 2005 .

[26]  Michael J. Zaworotko,et al.  Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids , 1992 .