Spatiotemporal genomic architecture informs precision oncology in glioblastoma

[1]  In-Hee Lee,et al.  Clonal evolution of glioblastoma under therapy , 2016, Nature Genetics.

[2]  Kenneth Hess,et al.  The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection? , 2016, Journal of neurosurgery.

[3]  Steven J. M. Jones,et al.  Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma , 2016, Cell.

[4]  Mauricio Reyes,et al.  Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features , 2015, Scientific Reports.

[5]  Max Wintermark,et al.  Multicenter imaging outcomes study of The Cancer Genome Atlas glioblastoma patient cohort: imaging predictors of overall and progression-free survival. , 2015, Neuro-oncology.

[6]  In-Hee Lee,et al.  Spatiotemporal Evolution of the Primary Glioblastoma Genome. , 2015, Cancer cell.

[7]  Wei Zhang,et al.  Genetic, epigenetic, and molecular landscapes of multifocal and multicentric glioblastoma , 2015, Acta Neuropathologica.

[8]  Michael B. Stadler,et al.  PIK3CAH1047R induces multipotency and multi-lineage mammary tumours , 2015, Nature.

[9]  Andrew Menzies,et al.  Subclonal diversification of primary breast cancer revealed by multiregion sequencing , 2015, Nature Medicine.

[10]  Satoru Miyano,et al.  Mutational landscape and clonal architecture in grade II and III gliomas , 2015, Nature Genetics.

[11]  Jill S Barnholtz-Sloan,et al.  Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution , 2015, Genome research.

[12]  C. Curtis,et al.  A Big Bang model of human colorectal tumor growth , 2015, Nature Genetics.

[13]  Emily J. Girard,et al.  Deep sequencing of multiple regions of glial tumors reveals spatial heterogeneity for mutations in clinically relevant genes , 2014, Genome Biology.

[14]  Franziska Michor,et al.  Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. , 2014, Cancer cell.

[15]  Andrew J. Blumberg,et al.  Moduli Spaces of Phylogenetic Trees Describing Tumor Evolutionary Patterns , 2014, Brain Informatics and Health.

[16]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[17]  Sanjeeva Srivastava,et al.  Fluorescence-guided surgery of malignant gliomas based on 5-aminolevulinic acid: paradigm shifts but not a panacea , 2014, Nature Reviews Cancer.

[18]  T. Cloughesy,et al.  Glioblastoma: from molecular pathology to targeted treatment. , 2014, Annual review of pathology.

[19]  Steven J. M. Jones,et al.  Mutational Analysis Reveals the Origin and Therapy-Driven Evolution of Recurrent Glioma , 2014, Science.

[20]  S. Gygi,et al.  Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia , 2013, Nature Neuroscience.

[21]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[22]  Raul Rabadan,et al.  The integrated landscape of driver genomic alterations in glioblastoma , 2013, Nature Genetics.

[23]  Stephen M. Moore,et al.  The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository , 2013, Journal of Digital Imaging.

[24]  V. P. Collins,et al.  Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics , 2013, Proceedings of the National Academy of Sciences.

[25]  D. Brat,et al.  Transforming Fusions of FGFR and TACC Genes in Human Glioblastoma , 2012, Science.

[26]  H. Seol,et al.  MET signaling regulates glioblastoma stem cells. , 2012, Cancer research.

[27]  Z. Naito,et al.  CD44 in human glioma correlates with histopathological grade and cell migration , 2012, Pathology international.

[28]  A. McKenna,et al.  Absolute quantification of somatic DNA alterations in human cancer , 2012, Nature Biotechnology.

[29]  T. Wakabayashi,et al.  Current Trends in Targeted Therapies for Glioblastoma Multiforme , 2012, Neurology research international.

[30]  Shuguang Huang,et al.  Comparing statistical methods for quantifying drug sensitivity based on in vitro dose-response assays. , 2012, Assay and drug development technologies.

[31]  Debyani Chakravarty,et al.  Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response , 2012, Proceedings of the National Academy of Sciences.

[32]  Rebecca A Betensky,et al.  Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. , 2011, Cancer cell.

[33]  Christopher A. Maher,et al.  ChimeraScan: a tool for identifying chimeric transcription in sequencing data , 2011, Bioinform..

[34]  Ferenc A. Jolesz,et al.  Radiogenomic Mapping of Edema/Cellular Invasion MRI-Phenotypes in Glioblastoma Multiforme , 2011, PloS one.

[35]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[36]  Sotirios Giannopoulos,et al.  Diagnosis and Management of Multifocal Gliomas , 2011, Oncology.

[37]  M. Bhasin,et al.  Bioinformatic identification and characterization of human endothelial cell-restricted genes , 2010, BMC Genomics.

[38]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[39]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[40]  Y. Xing,et al.  A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function , 2008, The Journal of Neuroscience.

[41]  Facundo Mémoli,et al.  Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition , 2007, PBG@Eurographics.

[42]  F. Zanella,et al.  Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. , 2006, The Lancet. Oncology.

[43]  Yuri Kotliarov,et al.  Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. , 2006, Cancer cell.

[44]  Alexander R. Abbas,et al.  Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data , 2005, Genes and Immunity.

[45]  Christian Hartmann,et al.  PIK3CA mutations in glioblastoma multiforme , 2005, Acta Neuropathologica.

[46]  Federica,et al.  Identification of T Cell-Restricted Genes, and Signatures for Different T Cell Responses, Using a Comprehensive Collection of Microarray Datasets , 2005 .

[47]  G. Ginsburg,et al.  The path to personalized medicine. , 2002, Current opinion in chemical biology.

[48]  J. Schlessinger Cell Signaling by Receptor Tyrosine Kinases , 2000, Cell.

[49]  K. Kinzler,et al.  Lessons from Hereditary Colorectal Cancer , 1996, Cell.

[50]  G. Pilkington,et al.  CD44 mediates human glioma cell adhesion and invasion in vitro. , 1994, Cancer research.

[51]  N. Leeds,et al.  Imaging patterns of multifocal gliomas. , 1993, European journal of radiology.

[52]  J. Schlessinger,et al.  Signaling by Receptor Tyrosine Kinases , 1993 .