Inverse Kinematics and Extended Kalman Filter Based Motion Tracking of Human Limb

This paper addresses the problem of motion tracking of human skeleton system using non-invasive vision based sensors. The proposed approach combines synergistic paradigms of image processing, kinematics of rigid bodies and Extended Kalman Filtering scheme to estimate the motion of a human limb system. This approach solely depends on the measurement obtained from the vision sensors without involving any wearable or inertial sensors to measure the motion parameters. In this paper we propose fusion of two filtering schemes — the optical flow equations applied to raw images obtained from the Microsoft Kinect and extended Kalman filter for human skeleton considered as a system of kinematic linkages. The strategy proposed in this paper yields near optimal results as is demonstrated with the help of experiments performed using the Microsoft Kinect sensor and compared using accurate tracks obtained from 24-Camera Optitrack motion capture system.Copyright © 2014 by ASME

[1]  Begonya Garcia-Zapirain,et al.  Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications , 2014, Sensors.

[2]  Hans-Peter Seidel,et al.  Optimization and Filtering for Human Motion Capture , 2010, International Journal of Computer Vision.

[3]  Ran Gilad-Bachrach,et al.  Full body gait analysis with Kinect , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[4]  Adrian Hilton,et al.  Visual Analysis of Humans - Looking at People , 2013 .

[5]  James U. Korein,et al.  A geometric investigation of reach , 1985 .

[6]  Greg Welch,et al.  An Introduction to Kalman Filter , 1995, SIGGRAPH 2001.

[7]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[8]  Takeo Kanade,et al.  On the sustained tracking of human motion , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[9]  Byoung-Tak Zhang,et al.  Enhancing human action recognition through spatio-temporal feature learning and semantic rules , 2013, 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids).

[10]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[11]  Aristotle Aristotle,et al.  Aristotle's De Motu Animalium: Text with Translation, Commentary, and Interpretive Essays , 1978 .

[12]  Florian Schmidt,et al.  Joint origin identification of articulated robots with marker-based multi-camera optical tracking systems , 2013, Robotics Auton. Syst..

[13]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[14]  M. Hunt,et al.  Validity of the Microsoft Kinect for providing lateral trunk lean feedback during gait retraining. , 2013, Gait & posture.

[15]  Eric Wan Sigma-Point Filters: An Overview with Applications to Integrated Navigation and Vision Assisted Control , 2006, 2006 IEEE Nonlinear Statistical Signal Processing Workshop.

[16]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[17]  Andreas Aristidou,et al.  Real-time marker prediction and CoR estimation in optical motion capture , 2011, The Visual Computer.

[18]  Jenq-Neng Hwang,et al.  A Review on Video-Based Human Activity Recognition , 2013, Comput..

[19]  Hans-Peter Seidel,et al.  A Silhouette Based Human Motion Tracking System , 2005 .

[20]  Kevin Bouchard,et al.  A new qualitative spatial recognition model based on Egenhofer topological approach using C4.5 algorithm: experiment and results , 2011, ANT/MobiWIS.

[21]  Takeo Kanade,et al.  Linearized Motion Estimation for Articulated Planes , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[23]  Andre Gaschler,et al.  Real-Time Marker-Based Motion Tracking: Application to Kinematic Model Estimation of a Humanoid Robot , 2011 .

[24]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[25]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[26]  Jung Keun 3D spinal motion analysis during staircase walking using an ambulatory inertial and magnetic sensing system , 2011 .

[27]  Samsu Sempena,et al.  Human action recognition using Dynamic Time Warping , 2011, Proceedings of the 2011 International Conference on Electrical Engineering and Informatics.

[28]  Bodo Rosenhahn,et al.  Analyzing and Evaluating Markerless Motion Tracking Using Inertial Sensors , 2010, ECCV Workshops.

[29]  Wei Wang,et al.  Quadratic extended Kalman filter approach for GPS/INS integration , 2006 .

[30]  Huosheng Hu,et al.  Human motion tracking for rehabilitation - A survey , 2008, Biomed. Signal Process. Control..

[31]  I-Ming Chen,et al.  Kinematic Uncertainties in Human Motion Tracking and Interaction , 2014 .

[32]  Huosheng Hu,et al.  Kinematic model aided inertial motion tracking of human upper limb , 2005, 2005 IEEE International Conference on Information Acquisition.

[33]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Ramakant Nevatia,et al.  Tracking multiple humans in crowded environment , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[35]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[36]  Sotiris B. Kotsiantis,et al.  Supervised Machine Learning: A Review of Classification Techniques , 2007, Informatica.

[37]  Andrew W. Fitzgibbon,et al.  Real-time human pose recognition in parts from single depth images , 2011, CVPR 2011.

[38]  Adolfo Guzman,et al.  Decomposition of a visual scene into three-dimensional bodies , 1968 .

[39]  Michael L. Littman,et al.  Activity Recognition from Accelerometer Data , 2005, AAAI.

[40]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[41]  P. Anandan,et al.  Hierarchical Model-Based Motion Estimation , 1992, ECCV.

[42]  Norman I. Badler,et al.  Real-Time Inverse Kinematics Techniques for Anthropomorphic Limbs , 2000, Graph. Model..

[43]  Michael J. Black,et al.  HumanEva: Synchronized Video and Motion Capture Dataset and Baseline Algorithm for Evaluation of Articulated Human Motion , 2010, International Journal of Computer Vision.

[44]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[45]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[46]  Peter H. Veltink,et al.  Ambulatory human motion tracking by fusion of inertial and magnetic sensing with adaptive actuation , 2009, Medical & Biological Engineering & Computing.

[47]  M. Kumar,et al.  Intelligent multi-sensor fusion techniques in flexible manufacturing workcells , 2004, Proceedings of the 2004 American Control Conference.

[48]  Daniel Roetenberg,et al.  Inertial and magnetic sensing of human motion , 2006 .

[49]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[50]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.