An Evidential Measure of Risk in Evidential Markov Chains

This paper provides a new method for computing a risk criterion for decision-making in systems modelled by an Evidential Markov Chain (EMC), which is a generalization to the Dempster-Shafer's Theory of Evidence [1]: it is a Markov chain manipulating sets of states instead of the states themselves. A cost is associated to each state. An evidential risk measurement derived from the statistical ones will be proposed. The vector of the costs of the states, the transition matrix of the Markov model, and the gauge matrix describing the repartition of the sets will be used to construct matrix calculations in order to provide an upper and a lower bound of the estimated risk. The former is a Choquet integral following the belief function, and the latter is established from the plausibility function.

[1]  Fabio Gagliardi Cozman,et al.  Unifying Nondeterministic and Probabilistic Planning Through Imprecise Markov Decision Processes , 2006, IBERAMIA-SBIA.

[2]  Denis Pellerin,et al.  Un filtre temporel crédibiliste pour la reconnaissance d'actions humaines dans les vidéos , 2006, ArXiv.

[3]  Hideaki Itoh,et al.  Partially observable Markov decision processes with imprecise parameters , 2007, Artif. Intell..

[4]  Hélène Soubaras On Evidential Markov Chains , 2010 .

[5]  Wojciech Pieczynski,et al.  03 - Chaînes et arbres de Markov évidentiels avec applications à la segmentation des processus non stationnaires , 2005 .

[6]  Wojciech Pieczynski Hidden evidential Markov trees and image segmentation , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[7]  Radko Mesiar Fuzzy measures and integrals , 2005, Fuzzy Sets Syst..

[8]  S. Ramanna,et al.  Application of the Choquet integral in software cost estimation , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[9]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[10]  Emmanuel Ramasso,et al.  Reconnaissance de séquences d'états par le Modèle des Croyances Transférables. Application à l'analyse de vidéos d'athlétisme. (State sequence recognition based on the Transferable Belief Model. Application to athletics videos analysis) , 2007 .

[11]  Fabio Cuzzolin,et al.  A Geometric Approach to the Theory of Evidence , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[12]  U. Rieder,et al.  Markov Decision Processes , 2010 .

[13]  David Harmanec A Generalization of the Concept of Markov Decision Process to Imprecise Probabilities , 1999, ISIPTA.

[14]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[15]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[16]  Philippe Smets,et al.  The Transferable Belief Model , 1991, Artif. Intell..