Identification of Nonvisual Photomotor Response Cells in the Vertebrate Hindbrain

Nonvisual photosensation enables animals to sense light without sight. However, the cellular and molecular mechanisms of nonvisual photobehaviors are poorly understood, especially in vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible series of motor behaviors in zebrafish that is elicited by visual wavelengths of light but does not require the eyes, pineal gland, or other canonical deep-brain photoreceptive organs. Unlike the relatively slow effects of canonical nonvisual pathways, motor circuits are strongly and quickly (seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors control this behavior. These data represent the first known light-sensing circuit in the vertebrate hindbrain.

[1]  Aristides B. Arrenberg,et al.  Deep Brain Photoreceptors Control Light-Seeking Behavior in Zebrafish Larvae , 2012, Current Biology.

[2]  Drew N. Robson,et al.  Brain-wide neuronal dynamics during motor adaptation in zebrafish , 2012, Nature.

[3]  R. V. Van Gelder,et al.  Melanopsin Is Highly Resistant to Light and Chemical Bleaching in Vivo* , 2012, The Journal of Biological Chemistry.

[4]  S. Hattar,et al.  Unexpected Diversity and Photoperiod Dependence of the Zebrafish Melanopsin System , 2011, PloS one.

[5]  L. Looger,et al.  Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall , 2010, Nature.

[6]  Yoshihiro Kubo,et al.  A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds , 2010, Proceedings of the National Academy of Sciences.

[7]  Tao Xu,et al.  C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog , 2010, Nature Neuroscience.

[8]  Harold A. Burgess,et al.  Distinct Retinal Pathways Drive Spatial Orientation Behaviors in Zebrafish Navigation , 2010, Current Biology.

[9]  Clifford B. Saper,et al.  A neural mechanism for exacerbation of headache by light , 2010, Nature Neuroscience.

[10]  Christian Laggner,et al.  Rapid behavior—based identification of neuroactive small molecules in the zebrafish , 2009, Nature chemical biology.

[11]  S. Halford,et al.  The evolution of irradiance detection: melanopsin and the non-visual opsins , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[12]  S. Edwards,et al.  A Novel Molecular Solution for Ultraviolet Light Detection in Caenorhabditis elegans , 2008, PLoS biology.

[13]  A. Roach,et al.  Non-Associative Learning in Larval Zebrafish , 2008, Neuropsychopharmacology.

[14]  J. Dowling,et al.  Differential expression of duplicated VAL‐opsin genes in the developing zebrafish , 2008, Journal of neurochemistry.

[15]  L. Zon,et al.  Transparent adult zebrafish as a tool for in vivo transplantation analysis. , 2008, Cell stem cell.

[16]  M. Moseley,et al.  Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual Awareness in Humans Lacking an Outer Retina , 2007, Current Biology.

[17]  Sebastian Kraves,et al.  OFF ganglion cells cannot drive the optokinetic reflex in zebrafish , 2007, Proceedings of the National Academy of Sciences.

[18]  K. Palczewski,et al.  Evidence for RPE65‐independent vision in the cone‐dominated zebrafish retina , 2007, The European journal of neuroscience.

[19]  H. Burgess,et al.  Modulation of locomotor activity in larval zebrafish during light adaptation , 2007, Journal of Experimental Biology.

[20]  Michael Granato,et al.  Sensorimotor Gating in Larval Zebrafish , 2007, The Journal of Neuroscience.

[21]  Thomas Knöpfel,et al.  In vivo calcium imaging from genetically specified target cells in mouse cerebellum , 2007, NeuroImage.

[22]  R. V. Van Gelder,et al.  Inner retinal photoreception independent of the visual retinoid cycle , 2006, Proceedings of the National Academy of Sciences.

[23]  M. Granato,et al.  Supraspinal input is dispensable to generate glycine-mediated locomotive behaviors in the zebrafish embryo. , 2006, Journal of neurobiology.

[24]  J. M. Fadool,et al.  Studying rod photoreceptor development in zebrafish , 2005, Physiology & Behavior.

[25]  K. Palczewski,et al.  Positively charged retinoids are potent and selective inhibitors of the trans-cis isomerization in the retinoid (visual) cycle. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Hazel Sive,et al.  Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products , 2005, Development.

[27]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[28]  K. Palczewski,et al.  Phototransduction: crystal clear. , 2003, Trends in biochemical sciences.

[29]  M. Biel,et al.  Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice , 2003, Nature.

[30]  E. Brustein,et al.  Steps during the development of the zebrafish locomotor network , 2003, Journal of Physiology-Paris.

[31]  Y. Fukada,et al.  Pineal expression-promoting element (PIPE), a cis-acting element, directs pineal-specific gene expression in zebrafish , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  A. Krøvel,et al.  Expression of a vas::EGFP transgene in primordial germ cells of the zebrafish , 2002, Mechanisms of Development.

[33]  Á. Szél,et al.  Review Nonvisual photoreceptors of the deep brain, pineal organs and retina , 2022 .

[34]  D. Berson,et al.  Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock , 2002, Science.

[35]  P. Drapeau,et al.  Synchronization of an Embryonic Network of Identified Spinal Interneurons Solely by Electrical Coupling , 2001, Neuron.

[36]  S. Reppert,et al.  Molecular analysis of mammalian circadian rhythms. , 2001, Annual review of physiology.

[37]  Sung-Kook Hong,et al.  Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. , 2000, Developmental biology.

[38]  Pierre Drapeau,et al.  Motoneuron Activity Patterns Related to the Earliest Behavior of the Zebrafish Embryo , 2000, The Journal of Neuroscience.

[39]  Jens M. Rick,et al.  Optokinetic behavior is reversed in achiasmatic mutant zebrafish larvae , 2000, Current Biology.

[40]  Y. Fukada,et al.  Vertebrate Ancient-Long Opsin: A Green-Sensitive Photoreceptive Molecule Present in Zebrafish Deep Brain and Retinal Horizontal Cells , 2000, The Journal of Neuroscience.

[41]  Y. Fukada,et al.  Exo-rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. , 1999, Brain research. Molecular brain research.

[42]  R. Foster,et al.  Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. , 1999, Science.

[43]  P. Drapeau,et al.  In vivo recording from identifiable neurons of the locomotor network in the developing zebrafish , 1999, Journal of Neuroscience Methods.

[44]  J. Dowling,et al.  Early retinal development in the zebrafish, Danio rerio: Light and electron microscopic analyses , 1999, The Journal of comparative neurology.

[45]  P. Drapeau,et al.  Time course of the development of motor behaviors in the zebrafish embryo. , 1998, Journal of neurobiology.

[46]  C. Nüsslein-Volhard,et al.  Zebrafish Touch-Insensitive Mutants Reveal an Essential Role for the Developmental Regulation of Sodium Current , 1998, The Journal of Neuroscience.

[47]  T. Okano,et al.  A deep brain photoreceptive molecule in the toad hypothalamus , 1998, FEBS letters.

[48]  W. P. Hayes,et al.  Melanopsin: An opsin in melanophores, brain, and eye. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[49]  S. Easter,et al.  The development of eye movements in the zebrafish (Danio rerio). , 1997, Developmental psychobiology.

[50]  S. Snyder,et al.  Parapinopsin, a Novel Catfish Opsin Localized to the Parapineal Organ, Defines a New Gene Family , 1997, The Journal of Neuroscience.

[51]  S. Easter,et al.  The development of vision in the zebrafish (Danio rerio). , 1996, Developmental biology.

[52]  J B Hurley,et al.  A behavioral screen for isolating zebrafish mutants with visual system defects. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[53]  M. Max,et al.  Pineal opsin: a nonvisual opsin expressed in chick pineal , 1995, Science.

[54]  Toshiyuki Okano,et al.  Pinopsin is a chicken pineal photoreceptive molecule , 1994, Nature.

[55]  H. Heatwole,et al.  Cutaneous photoreception : a new sensory mechanism for reptiles , 1990 .

[56]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[57]  T. Yoshizawa,et al.  Light-induced pigment aggregation in cultured fish melanophores: spectral sensitivity and inhibitory effects of theophylline and cyclic adenosine-3',5'-monophosphate. , 1980, Journal of cell science.

[58]  M. Heaton,et al.  Non-visual light responsiveness in the pigeon: developmental and comparative considerations. , 1974, The Journal of experimental zoology.

[59]  M. Heaton,et al.  Nonvisual Photic Responsiveness in Newly Hatched Pigeons (Columba livia) , 1973, Science.

[60]  R. Cone,et al.  Light-Stimulated Electrical Responses from Skin , 1966, Science.

[61]  J. Young The Photoreceptors of Lampreys: I. Light-sensitive Fibres in the Lateral Line Nerves , 1935 .