Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components

Thermoacoustic engines attract much attention for their lack of moving parts and relatively benign environmental impact. In this review, an introduction of the thermoacoustic effect is supported by a summary of related theoretical models for thermoacoustics. An overview of the current research and experimental prototypes including typical thermoacoustic prime movers, thermoacoustic refrigerators, thermoacoustically driven pulse tube refrigerators, thermoacoustic generators and miniature thermoacoustic engines is presented. The worldwide research activities and the related advances in the thermoacoustic engines, mainly in past 30 years, are reviewed in details. Finally, we present a short summary of promotional studies and perspectives in this developing research field.

[1]  Michel Bruneau,et al.  Analysis of a Coaxial, Compact Thermoacoustic Heat-Pump , 2013 .

[2]  Gaelle Poignand,et al.  Nonlinear temperature field near the stack ends of a standing-wave thermoacoustic refrigerator , 2011 .

[3]  K. T. Feldman,et al.  Review of the literature on Sondhauss thermoacoustic phenomena , 1968 .

[4]  Ercang Luo,et al.  A heat-driven thermoacoustic cryocooler capable of reaching below liquid hydrogen temperature , 2007 .

[5]  Nikolaus Rott,et al.  Damped and thermally driven acoustic oscillations in wide and narrow tubes , 1969 .

[6]  Jeffrey S. Vipperman,et al.  CFD simulation of thermoacoustic cooling , 2010 .

[7]  Huifang Kang,et al.  A two-stage traveling-wave thermoacoustic electric generator with loudspeakers as alternators , 2015 .

[8]  Artur J. Jaworski,et al.  Thermoacoustic travelling-wave cooler driven by a cascade thermoacoustic engine , 2013 .

[9]  Ke Tang,et al.  Influence of acoustic pressure amplifier dimensions on the performance of a standing-wave thermoacoustic system , 2009 .

[10]  Ercang Luo,et al.  Advances in a 300 Hz thermoacoustic cooler system working within liquid nitrogen temperature range , 2010 .

[11]  Ercang Luo,et al.  A novel coupling configuration for thermoacoustically-driven pulse tube coolers: Acoustic amplifier , 2005 .

[12]  Ray Scott Wakeland,et al.  Thermoacoustic refrigeration demonstration , 1998 .

[13]  Ercang Luo,et al.  A high-performance thermoacoustic refrigerator operating in room-temperature range , 2005 .

[14]  Artur J. Jaworski,et al.  A method of characterising performance of audio loudspeakers for linear alternator applications in low-cost thermoacoustic electricity generators , 2011 .

[15]  Ercang Luo,et al.  A 100 W-class traveling-wave thermoacoustic electricity generator , 2008 .

[16]  Bo Wang,et al.  Characteristics of onset and damping in a standing-wave thermoacoustic engine driven by liquid nitrogen , 2013 .

[17]  Xin Huang,et al.  Thermodynamic analysis of onset characteristics in a miniature thermoacoustic Stirling engine , 2013 .

[18]  J. Gaffney,et al.  Thermal Oscillations in Low Temperature Apparatus , 1960 .

[19]  Chen Zhongqi,et al.  Double inlet pulse tube refrigerators : an important improvement , 1990 .

[20]  Steven L. Garrett,et al.  A large solar/heat‐driven thermoacoustic cooler , 2000 .

[21]  Tao Jin,et al.  A thermoacoustically driven pulse tube refrigerator capable of working below 120 K , 2001 .

[22]  Guobang Chen,et al.  Application of thermoacoustic effect to refrigeration , 2003 .

[23]  Ercang Luo,et al.  Characterization of a 300 Hz thermoacoustically-driven pulse tube cooler , 2009 .

[24]  Yonglin Ju,et al.  Design and experimental investigations on a small scale traveling wave thermoacoustic engine , 2013 .

[25]  Guobang Chen,et al.  Influence of resonance tube geometry shape on performance of thermoacoustic engine. , 2006, Ultrasonics.

[26]  Richard Raspet,et al.  Stability analysis of a helium‐filled thermoacoustic engine , 1994 .

[27]  Nikolaus Rott,et al.  Thermally driven acoustic oscillations, Part VI: Excitation and power , 1983 .

[28]  G. Huelsz,et al.  Heat-to-electricity thermoacoustic-magnetohydrodynamic conversion , 2007 .

[29]  de Atam Fons Waele,et al.  Basic treatment of onset conditions and transient effects in thermoacoustic Stirling engines , 2009 .

[30]  W Dai,et al.  Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine. , 2006, Ultrasonics.

[31]  Michel Bruneau,et al.  Optimal acoustic fields in compact thermoacoustic refrigerators , 2007 .

[32]  Maa Dah,et al.  Theory and nonlinearity of thermoacoustics:II. Nonlinear sound waves in thermoacoustic tubes , 1999 .

[33]  Karpov,et al.  Nonlinear saturation of the thermoacoustic instability , 2000, The Journal of the Acoustical Society of America.

[34]  W. P. Arnott,et al.  Thermoacoustic engines , 1991, IEEE 1991 Ultrasonics Symposium,.

[35]  T. Yazaki,et al.  TRAVELING WAVE THERMOACOUSTIC ENGINE IN A LOOPED TUBE , 1998 .

[36]  Nikolaus Rott,et al.  Thermally driven acoustic oscillations, part IV: Tubes with variable cross-section , 1976 .

[37]  Tao Jin,et al.  Performance comparison of thermoacoustic engines with constant-diameter resonant tube and tapered resonant tube , 2006 .

[38]  Michel Bruneau,et al.  Thermoacoustic, Small Cavity Excitation to Achieve Optimal Performance , 2011 .

[39]  Shuliang Zhou,et al.  Experimental Research of Thermoacoustic Prime Mover , 1997 .

[40]  Nikolaus Rott,et al.  Thermally driven acoustic oscillations, part V: Gas-liquid oscillations , 1976 .

[41]  Gregory W. Swift,et al.  Similitude in thermoacoustics , 1993 .

[42]  Andrea Prosperetti,et al.  A nonlinear model of thermoacoustic devices. , 2002, The Journal of the Acoustical Society of America.

[43]  Ercang Luo,et al.  Numerical simulation and experimental investigation of a gas‐liquid, double‐acting traveling‐wave thermoacoustic heat engine , 2013 .

[44]  Andrea Prosperetti,et al.  A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part I. Model and linear theory , 1997 .

[45]  A Freese,et al.  The power of sound. , 1970, Tic.

[46]  Tetsushi Biwa,et al.  Thermodynamical mode selection rule observed in thermoacoustic oscillations , 2002 .

[47]  G. Swift,et al.  A thermoacoustic-Stirling heat engine: detailed study , 2000, The Journal of the Acoustical Society of America.

[48]  Richard Raspet,et al.  Experimental study of a thermoacoustic termination of a traveling‐wave tube , 1995 .

[49]  E. C. Luo,et al.  Technical Note An energy-focused thermoacoustic-Stirling heat engine reaching a high pressure ratio above 1.40 , 2007 .

[50]  Scott Backhaus,et al.  Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy , 2012 .

[51]  G. W. Swift,et al.  A liquid‐metal magnetohydrodynamic acoustic transducer , 1988 .

[52]  Michel Bruneau,et al.  Transient temperature profile inside thermoacoustic refrigerators , 2009 .

[53]  Gusev,et al.  Acoustic streaming in annular thermoacoustic prime-movers , 2000, The Journal of the Acoustical Society of America.

[54]  Artur J. Jaworski,et al.  Development of thermoacoustic devices for power generation and refrigeration , 2013 .

[55]  Syeda Humaira Tasnim,et al.  Effects of variation in working fluids and operating conditions on the performance of a thermoacoustic refrigerator , 2012 .

[56]  Richard Raspet,et al.  Specific acoustic impedance measurements of an air-filled thermoacoustic prime mover , 1992 .

[57]  K. W. Taconis,et al.  Measurements concerning the vapour-liquid equilibrum of solutions of He3 in He4 below 2.19°K , 1949 .

[58]  K. Blok MULTI-STAGE TRAVELING WAVE THERMOACOUSTICS IN PRACTICE , 2012 .

[59]  G. W. Swift,et al.  An intrinsically irreversible thermoacoustic heat engine , 1983 .

[60]  Xuhan Zhang,et al.  A traveling-wave thermoacoustic electric generator with a variable electric R-C load , 2013 .

[61]  Peter H. Ceperley,et al.  A pistonless Stirling engine—The traveling wave heat engine , 1979 .

[62]  Ercang Luo,et al.  Experimental study of a thermoacoustically-driven traveling wave thermoacoustic refrigerator , 2011 .

[63]  Daming Sun,et al.  Numerical simulation of the onset characteristics in a standing wave thermoacoustic engine based on thermodynamic analysis , 2012 .

[64]  Shin-ichi Sakamoto,et al.  Study on thermoacoustic system to drive by low temperature -Effects of loop-tube thermoacoustic system connected with parallel double stacks on the onset temperature ratio , 2013 .

[65]  Hiroyuki Sugita,et al.  Experimental study on thermally actuated pressure wave generator for space cryocooler , 2004 .

[66]  Guillaume Penelet,et al.  Simplified account of Rayleigh streaming for the description of nonlinear processes leading to steady state sound in thermoacoustic engines , 2012 .

[67]  Guoyao Yu,et al.  A HIGH FREQUENCY THERMOACOUSTICALLY‐DRIVEN PULSE TUBE CRYOCOOLER WITH COAXIAL RESONATOR , 2010 .

[68]  Ming Li,et al.  Performance comparison of jet pumps with rectangular and circular tapered channels for a loop-structured traveling-wave thermoacoustic engine , 2015 .

[69]  Luo Ercang,et al.  Experimental Study on a Coaxial Traveling Wave Thermoacoustic Engine , 2002 .

[70]  Stephen C. Ballister,et al.  Shipboard electronics thermoacoustic cooler , 1995 .

[71]  Qing Li,et al.  Synthetical optimization of hydraulic radius and acoustic field for thermoacoustic cooler , 2009 .

[72]  Bo Wang,et al.  Novel Helmholtz resonator used to focus acoustic energy of thermoacoustic engine , 2009 .

[73]  Nikolaus Rott,et al.  Thermally driven acoustic oscillations, part III: Second-order heat flux , 1975 .

[74]  G. Swift,et al.  A thermoacoustic Stirling heat engine , 1999, Nature.

[75]  Atsushi Akisawa,et al.  Optimization of the regenerator of a traveling-wave thermoacoustic refrigerator , 2010 .

[76]  Artur J. Jaworski,et al.  Heat transfer processes in parallel-plate heat exchangers of thermoacoustic devices – numerical and experimental approaches , 2012 .

[77]  Scott Backhaus,et al.  A low-cost electricity generator for rural areas using a travelling-wave looped-tube thermoacoustic engine , 2010 .

[78]  Omar M. Knio,et al.  Experimental and computational visualization of the flow field in a thermoacoustic stack , 2003 .

[79]  Artur J. Jaworski,et al.  Application of laser-based instrumentation for measurement of time-resolved temperature and velocity fields in the thermoacoustic system , 2010 .

[80]  Gregory W. Swift,et al.  Simple harmonic analysis of regenerators , 1996 .

[81]  Ercang Luo,et al.  Influence of acoustic pressure amplifier tube on a 300 Hz thermoacoustically driven pulse tube cooler , 2010 .

[82]  Zhihua Gan,et al.  Investigation on a thermoacoustically driven pulse tube cooler working at 80 K , 2005 .

[83]  Nikolaus Rott,et al.  Thermally driven acoustic oscillations. Part II: Stability limit for helium , 1973 .

[84]  Guillaume Penelet,et al.  Account of heat convection by Rayleigh streaming in the description of wave amplitude growth and stabilization in a standing wave thermoacoustic prime-mover. , 2012 .

[85]  Atsushi Akisawa,et al.  Design and construction of a traveling wave thermoacoustic refrigerator , 2011 .

[86]  Tetsushi Biwa,et al.  Acoustical power amplification and damping by temperature gradients. , 2011, The Journal of the Acoustical Society of America.

[87]  Kees de Blok Novel 4-Stage Traveling Wave Thermoacoustic Power Generator , 2010 .

[88]  Yasuo Oshinoya,et al.  A thermoacoustic refrigerator driven by a low temperature-differential, high-efficiency multistage thermoacoustic engine , 2013 .

[89]  Tetsushi Biwa,et al.  Measurements of acoustic streaming in a looped-tube thermoacoustic engine with a jet pump , 2007 .

[90]  Ercang Luo,et al.  Study on cold head structure of a 300 Hz thermoacoustically driven pulse tube cryocooler , 2012 .

[91]  O. Symko,et al.  Helmholtz-like resonators for thermoacoustic prime movers. , 2009, The Journal of the Acoustical Society of America.

[92]  Philip Baringer,et al.  A drift chamber constructed of aluminized mylar tubes , 1987 .

[93]  K. T. Feldman,et al.  Review of the literature on Rijke thermoacoustic phenomena , 1968 .

[94]  L. W.,et al.  The Theory of Sound , 1898, Nature.

[95]  Artur J. Jaworski,et al.  Design and experimental validation of looped-tube thermoacoustic engine , 2011 .

[96]  Xiaotao Wang,et al.  Study on energy conversion characteristics of a high frequency standing-wave thermoacoustic heat engine , 2013 .

[97]  Ya-Ling He,et al.  Explanations on the onset and damping behaviors in a standing-wave thermoacoustic engine , 2013 .

[98]  Mark F Hamilton,et al.  Nonlinear two-dimensional model for thermoacoustic engines. , 2002, The Journal of the Acoustical Society of America.

[99]  Gregory W. Swift,et al.  Analysis and performance of a large thermoacoustic engine , 1992 .

[100]  Scott Backhaus,et al.  Development of a thermoacoustic natural gas liquefier. , 2002 .

[101]  M.E.H. Tijani,et al.  Construction and performance of a thermoacoustic refrigerator , 2002 .

[102]  Artur J. Jaworski,et al.  Selection and experimental evaluation of low-cost porous materials for regenerator applications in thermoacoustic engines , 2011 .

[103]  Amr M. Baz,et al.  Energy harvesting from a standing wave thermoacoustic-piezoelectric resonator , 2012 .

[104]  John J. Wollan,et al.  Thermoacoustic natural gas liquefier , 1995 .

[105]  Yoshitaka Inui,et al.  One factor of resonant wavelength shift from onewavelength to two-wavelength resonance in loop-tube-type thermoacoustic cooling system , 2012 .

[106]  Qing Li,et al.  A high frequency cascade thermoacoustic engine , 2006 .

[107]  G. W. Swift,et al.  Characterization of 350 Hz Thermoacoustic Driven Orifice Pulse Tube Refrigerator with Measurements of the Phase of the Mass Flow and Pressure , 1996 .

[108]  Fangzhong Guo,et al.  Experimental and theoretical investigation on frequency characteristic of loudspeaker-driven thermoacoustic refrigerator , 2005 .

[109]  Abbott A. Putnam,et al.  A Survey of Organ‐Pipe Oscillations in Combustion Systems , 1955 .

[110]  Normah Mohd Ghazali,et al.  Experimental Investigations on the Effects of Coiling and Bends on the Sound Energy Losses through a Resonator Tube , 2013 .

[111]  Hofler,et al.  Design and construction of a solar-powered, thermoacoustically driven, thermoacoustic refrigerator , 2000, The Journal of the Acoustical Society of America.

[112]  Qiu Limin,et al.  Study on the onset temperature of a standing-wave thermoacoustic engine based on circuit network theory , 2012 .

[113]  Yuji Korenaga A method of calculating monosyllable intelligibility of sound field in relation to temporal structures , 1995 .

[114]  Tian Lei,et al.  A standing-wave thermoacoustic engine with gas-liquid coupling oscillation , 2009 .

[115]  Chisachi Kato,et al.  Stability analysis of thermally induced spontaneous gas oscillations in straight and looped tubes. , 2008, The Journal of the Acoustical Society of America.

[116]  Steven L. Garrett,et al.  A thermoacoustic refrigerator for space applications. , 1989 .

[117]  Tao Jin,et al.  Thermoacoustically driven pulse tube cooler below 60 K , 2007 .

[118]  Reh-Lin Chen,et al.  Micromachined stack component for miniature thermoacoustic refrigerator , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).

[119]  Steven L. Garrett,et al.  Thermoacoustic Refrigerator for Space Applications , 1993 .

[120]  P. Hrycak,et al.  Thermodynamic analysis of a new gas refrigeration cycle , 1963 .

[121]  Tetsushi Biwa,et al.  Low temperature differential thermoacoustic Stirling engine , 2010 .

[122]  Qing Li,et al.  Heat driven thermoacoustic cooler based on traveling–standing wave , 2010 .

[123]  Artur J. Jaworski,et al.  Application of planar laser-induced fluorescence measurement techniques to study the heat transfer characteristics of parallel-plate heat exchangers in thermoacoustic devices , 2010 .

[124]  Zhanghua Wu,et al.  A solar-powered traveling-wave thermoacoustic electricity generator , 2012 .

[125]  Konstantin I. Matveev,et al.  Study of a small-scale standing-wave thermoacoustic engine , 2010 .

[126]  G. W. Swift,et al.  Acoustic streaming in pulse tube refrigerators: tapered pulse tubes , 1997 .

[127]  Tetsushi Biwa,et al.  A pistonless Stirling cooler , 2002 .

[128]  Shuangfeng Wang,et al.  Visualization investigation of the flow and heat transfer in thermoacoustic engine driven by loudspeaker , 2012 .

[129]  Andrea Prosperetti,et al.  A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part II. Nonlinear oscillations , 1997 .

[130]  Barton L Smith,et al.  Power dissipation and time-averaged pressure in oscillating flow through a sudden area change. , 2003, The Journal of the Acoustical Society of America.

[131]  S. Spoelstra,et al.  Simulation of a traveling-wave thermoacoustic engine using computational fluid dynamics , 2005 .

[132]  Zhibin Yu,et al.  Fishbone-like instability in a looped-tube thermoacoustic engine. , 2010, The Journal of the Acoustical Society of America.

[133]  Guobang Chen,et al.  Influence of resonance tube length on performance of thermoacoustically driven pulse tube refrigerator , 2005 .

[134]  R. Radebaugh,et al.  Development of a thermoacoustically driven orifice pulse tube refrigerator , 1990 .

[135]  Guobang Chen,et al.  Investigation on traveling wave thermoacoustic heat engine with high pressure amplitude , 2005 .

[136]  Guobang Chen,et al.  Thermoacoustically driven pulse tube refrigeration below 80K by introducing an acoustic pressure amplifier , 2006 .

[137]  Scott Backhaus,et al.  Traveling-wave thermoacoustic electric generator , 2004 .

[138]  Gaelle Poignand,et al.  Investigation of the acoustic field in a standing wave thermoacoustic refrigerator using time-resolved particule image velocimetry , 2012 .

[139]  T. Hofler Thermoacoustic Refrigerator Design and Performance , 1986 .

[140]  Yong Wang,et al.  NUMERICAL SIMULATION AND PARAMETER OPTIMIZATION OF THERMO-ACOUSTIC REFRIGERATOR DRIVEN AT LARGE AMPLITUDE , 2010 .

[141]  Y. S. Kwon,et al.  Design and development of high-frequency thermoacoustic engines for thermal management in microelectronics , 2004, Microelectron. J..

[142]  David K. Perkins,et al.  Thermoacoustic life sciences refrigerator , 1993 .

[143]  Richard Raspet,et al.  Thermoacoustic power conversion using a piezoelectric transducer. , 2010, The Journal of the Acoustical Society of America.

[144]  Peter H. Ceperley,et al.  Gain and efficiency of a short traveling wave heat engine , 1984 .

[145]  Tian Lei,et al.  Influence of working liquid on the onset characteristics of a thermoacoustic engine with gas and liquid , 2012 .

[146]  Gregory W. Swift,et al.  DESIGN ENVIRONMENT FOR LOW-AMPLITUDE THERMOACOUSTIC ENGINES , 1994 .

[147]  P. H. Riley,et al.  Development of Thermoacoustic Engine Operating by Waste Heat from Cooking Stove , 2012 .

[148]  Ke Tang,et al.  Lumped parameter model for resonant frequency estimation of a thermoacoustic engine with gas-liquid coupling oscillation , 2011 .

[149]  Tao Jin,et al.  Experimental observation on a small-scale thermoacoustic prime mover , 2007 .

[150]  Steven L. Garrett,et al.  Solar/heat‐driven thermoacoustic engine , 1998 .

[151]  Tao Jin,et al.  Experimental investigation on the onset and damping behavior of the oscillation in a thermoacoustic prime mover , 1999 .

[152]  Michel Bruneau,et al.  Experimental investigation of transient nonlinear phenomena in an annular thermoacoustic prime-mover: observation of a double-threshold effect , 2002 .

[153]  Scott Backhaus,et al.  Acoustic recovery of lost power in pulse tube refrigerators , 1999 .

[154]  Jeffrey S. Vipperman,et al.  Environmental motivation to switch to thermoacoustic refrigeration , 2010 .

[155]  Richard Raspet,et al.  Experimental study of a radial mode thermoacoustic prime mover , 1999 .

[156]  G. Swift,et al.  A cascade thermoacoustic engine. , 2003, The Journal of the Acoustical Society of America.

[157]  Sakamoto Shin-ichi,et al.  The effect of resonance mode control by expanding of cross-section area on cooling capacity in a loop-tube type thermoacoustic cooling system , 2013 .

[158]  Scott Backhaus,et al.  Design of a low-cost thermoacoustic electricity generator and its experimental verification , 2010 .

[159]  Tian Lei,et al.  Basic analysis on a thermoacoustic engine with gas and liquid , 2011 .

[160]  Keith Robert Pullen,et al.  Design and development of a low-cost, electricity-generating cooking Score-Stove™ , 2013 .

[161]  Yoshiaki Watanabe,et al.  Fundamental study for a working mechanism of Phase Adjuster set on thermoacoustic cooling system , 2012 .

[162]  Ercang Luo,et al.  An acoustical pump capable of significantly increasing pressure ratio of thermoacoustic heat engines , 2006 .

[163]  A. Piccolo,et al.  Optimization of thermoacoustic refrigerators using second law analysis , 2013 .

[164]  Ercang Luo,et al.  Experimental investigation of a 500 W traveling-wave thermoacoustic electricity generator , 2011 .

[165]  Michel Bruneau,et al.  Theory of acoustic streaming in annular thermoacoustic prime-mover , 2001 .