Sequencing and De Novo Assembly of the Transcriptome of the Glassy-Winged Sharpshooter (Homalodisca vitripennis)

Background The glassy-winged sharpshooter Homalodisca vitripennis (Hemiptera: Cicadellidae), is a xylem-feeding leafhopper and important vector of the bacterium Xylella fastidiosa; the causal agent of Pierce’s disease of grapevines. The functional complexity of the transcriptome of H. vitripennis has not been elucidated thus far. It is a necessary blueprint for an understanding of the development of H. vitripennis and for designing efficient biorational control strategies including those based on RNA interference. Results Here we elucidate and explore the transcriptome of adult H. vitripennis using high-throughput paired end deep sequencing and de novo assembly. A total of 32,803,656 paired-end reads were obtained with an average transcript length of 624 nucleotides. We assembled 32.9 Mb of the transcriptome of H. vitripennis that spanned across 47,265 loci and 52,708 transcripts. Comparison of our non-redundant database showed that 45% of the deduced proteins of H. vitripennis exhibit identity (e-value ≤1−5) with known proteins. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript isoform. In order to gain insight into the molecular basis of key regulatory genes of H. vitripennis, we characterized predicted proteins involved in the metabolism of juvenile hormone, and biogenesis of small RNAs (Dicer and Piwi sequences) from the transcriptomic sequences. Analysis of transposable element sequences of H. vitripennis indicated that the genome is less expanded in comparison to many other insects with approximately 1% of the transcriptome carrying transposable elements. Conclusions Our data significantly enhance the molecular resources available for future study and control of this economically important hemipteran. This transcriptional information not only provides a more nuanced understanding of the underlying biological and physiological mechanisms that govern H. vitripennis, but may also lead to the identification of novel targets for biorationally designed control strategies.

[1]  Yue-li Jiang,et al.  Global Transcriptome Analysis of Orange Wheat Blossom Midge, Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae) to Identify Candidate Transcripts Regulating Diapause , 2013, PloS one.

[2]  B. Hammock,et al.  Characterization of Hovi-mEH1, a microsomal epoxide hydrolase from the glassy-winged sharpshooter Homalodisca vitripennis. , 2013, Archives of insect biochemistry and physiology.

[3]  Tian Xia,et al.  BmTEdb: a collective database of transposable elements in the silkworm genome , 2013, Database J. Biol. Databases Curation.

[4]  V. Fofanov,et al.  Small RNA populations for two unrelated viruses exhibit different biases in strand polarity and proximity to terminal sequences in the insect host Homalodisca vitripennis. , 2013, Virology.

[5]  D. O’brochta,et al.  Post-Integration Silencing of piggyBac Transposable Elements in Aedes aegypti , 2013, PloS one.

[6]  R. Asokan,et al.  Effect of diet delivered various concentrations of double-stranded RNA in silencing a midgut and a non-midgut gene of Helicoverpa armigera , 2013, Bulletin of Entomological Research.

[7]  Jae Yong Yoo,et al.  RNA-dependent RNA polymerase 6 is required for efficient hpRNA-induced gene silencing in plants , 2013, Molecules and cells.

[8]  J. Fabrick,et al.  Sequencing and De Novo Assembly of the Western Tarnished Plant Bug (Lygus hesperus) Transcriptome , 2013, PloS one.

[9]  Juan Du,et al.  Transcriptome and Gene Expression Analysis of the Rice Leaf Folder, Cnaphalocrosis medinalis , 2012, PloS one.

[10]  N. Fedoroff Transposable Elements, Epigenetics, and Genome Evolution , 2012 .

[11]  B. Chénais,et al.  The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. , 2012, Gene.

[12]  Shaoli Wang,et al.  Tissue-Specific Transcriptome Profiling of Plutella Xylostella Third Instar Larval Midgut , 2012, International journal of biological sciences.

[13]  B. Bonning,et al.  Deep Sequencing of the Transcriptomes of Soybean Aphid and Associated Endosymbionts , 2012, PloS one.

[14]  B. Yao,et al.  Transcriptome Analysis of the Silkworm (Bombyx mori) by High-Throughput RNA Sequencing , 2012, PloS one.

[15]  H. Robertson,et al.  Distribution of Genes and Repetitive Elements in the Diabrotica virgifera virgifera Genome Estimated Using BAC Sequencing , 2012, Journal of biomedicine & biotechnology.

[16]  Steven J. M. Jones,et al.  Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests. , 2012, Insect biochemistry and molecular biology.

[17]  W. Guo,et al.  Large-Scale Transcriptome Analysis of Retroelements in the Migratory Locust, Locusta migratoria , 2012, PloS one.

[18]  E. Backus,et al.  Salivary enzymes are injected into xylem by the glassy-winged sharpshooter, a vector of Xylella fastidiosa. , 2012, Journal of insect physiology.

[19]  B. Falk,et al.  RNA interference is induced in the glassy winged sharpshooter Homalodisca vitripennis by actin dsRNA. , 2012, Pest management science.

[20]  Songnian Hu,et al.  Transposable-Element Associated Small RNAs in Bombyx mori Genome , 2012, PloS one.

[21]  Timothy E. Farkas,et al.  De novo characterization of the Timema cristinae transcriptome facilitates marker discovery and inference of genetic divergence , 2012, Molecular ecology resources.

[22]  S. Sze,et al.  A de novo transcriptome assembly of Lucilia sericata (Diptera: Calliphoridae) with predicted alternative splices, single nucleotide polymorphisms and transcript expression estimates , 2012, Insect molecular biology.

[23]  Martin Vingron,et al.  Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels , 2012, Bioinform..

[24]  Bin Yang,et al.  Global Transcriptome Profiling of the Pine Shoot Beetle, Tomicus yunnanensis (Coleoptera: Scolytinae) , 2012, PloS one.

[25]  I. Baldwin,et al.  Tobacco Rattle Virus Vector: A Rapid and Transient Means of Silencing Manduca sexta Genes by Plant Mediated RNA Interference , 2012, PloS one.

[26]  N. Fedoroff Presidential address. Transposable elements, epigenetics, and genome evolution. , 2012, Science.

[27]  Lingling Sun,et al.  Transcriptomic analysis of the housefly (Musca domestica) larva using massively parallel pyrosequencing , 2012, Molecular Biology Reports.

[28]  Monica F. Poelchau,et al.  A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation , 2011, BMC Genomics.

[29]  Wenjia Yang,et al.  Transcriptome Analysis of the Oriental Fruit Fly (Bactrocera dorsalis) , 2011, PloS one.

[30]  B. Han,et al.  Pyrosequencing the midgut transcriptome of the brown planthopper, Nilaparvata lugens , 2011, Insect molecular biology.

[31]  B. Falk,et al.  Oral Delivery of Double-Stranded RNAs and siRNAs Induces RNAi Effects in the Potato/Tomato Psyllid, Bactericerca cockerelli , 2011, PloS one.

[32]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[33]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[34]  Susan C. Jones,et al.  Transcriptomics of the Bed Bug (Cimex lectularius) , 2011, PloS one.

[35]  Piero Carninci,et al.  Chromatin-associatedRNA interference components contribute to transcriptional regulation in Drosophila , 2011 .

[36]  Hai-Jun Xu,et al.  Transcriptome Analysis of the Brown Planthopper Nilaparvata lugens , 2010, PloS one.

[37]  O. Mittapalli,et al.  The gut transcriptome of a gall midge, Mayetiola destructor. , 2010, Journal of insect physiology.

[38]  B. Falk,et al.  RNAi effects on actin mRNAs in Homalodisca vitripennis cells , 2010, Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research.

[39]  Guy Smagghe,et al.  Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. , 2010, Journal of insect physiology.

[40]  R. ffrench-Constant,et al.  Pyrosequencing the Manduca sexta larval midgut transcriptome: messages for digestion, detoxification and defence , 2010, Insect molecular biology.

[41]  Erich Bornberg-Bauer,et al.  Functional and Evolutionary Insights from the Genomes of Three Parasitoid Nasonia Species , 2010, Science.

[42]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[43]  Chuan-Xi Zhang,et al.  De novo characterization of a whitefly transcriptome and analysis of its gene expression during development , 2010, BMC Genomics.

[44]  S. Whyard,et al.  Ingested double-stranded RNAs can act as species-specific insecticides. , 2009, Insect biochemistry and molecular biology.

[45]  R. ffrench-Constant,et al.  Pyrosequencing of the midgut transcriptome of the poplar leaf beetle Chrysomela tremulae reveals new gene families in Coleoptera. , 2009, Insect biochemistry and molecular biology.

[46]  D. Moazed Small RNAs in transcriptional gene silencing and genome defence , 2009, Nature.

[47]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[48]  G. Karpen,et al.  Epigenetic regulation of centromeric chromatin: old dogs, new tricks? , 2008, Nature Reviews Genetics.

[49]  T. Shinoda,et al.  RNAi‐mediated knockdown of juvenile hormone acid O‐methyltransferase gene causes precocious metamorphosis in the red flour beetle Tribolium castaneum , 2008, The FEBS journal.

[50]  M. Robles,et al.  University of Birmingham High throughput functional annotation and data mining with the Blast2GO suite , 2022 .

[51]  Peer Bork,et al.  The Genome of the Model Beetle and Pest Tribolium Castaneum Vertebrate-specific Orthologues Insect-specific Orthologues Homology Undetectable Similarity , 2022 .

[52]  Gregor Bucher,et al.  Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium , 2008, Genome Biology.

[53]  Melanie A. Huntley,et al.  Evolution of genes and genomes on the Drosophila phylogeny , 2007, Nature.

[54]  B. Hammock,et al.  Measurement of Soluble Epoxide Hydrolase (sEH) Activity , 2007, Current protocols in toxicology.

[55]  Evgeny M. Zdobnov,et al.  Genome Sequence of Aedes aegypti, a Major Arbovirus Vector , 2007, Science.

[56]  The Chinese Human Genome Sequencing Consortium Insights into social insects from the genome of the honeybee Apis mellifera , 2006, Nature.

[57]  Ying Wang,et al.  Insights into social insects from the genome of the honeybee Apis mellifera , 2006, Nature.

[58]  Q. Xia,et al.  Identification and characterization of piggyBac-like elements in the genome of domesticated silkworm, Bombyx mori , 2006, Molecular Genetics and Genomics.

[59]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[60]  J. V. Moran,et al.  Mobile elements and mammalian genome evolution. , 2003, Current opinion in genetics & development.

[61]  C. Sim,et al.  Molecular evolutionary analysis of the widespread piggyBac transposon family and related "domesticated" sequences , 2003, Molecular Genetics and Genomics.

[62]  Julie D Thompson,et al.  Multiple Sequence Alignment Using ClustalW and ClustalX , 2003, Current protocols in bioinformatics.

[63]  M. Ashburner,et al.  The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective , 2002, Genome Biology.

[64]  Jian Wang,et al.  The Genome Sequence of the Malaria Mosquito Anopheles gambiae , 2002, Science.

[65]  D. Hartl Discovery of the transposable element mariner. , 2001, Genetics.

[66]  R. Carthew,et al.  Heritable gene silencing in Drosophila using double-stranded RNA , 2000, Nature Biotechnology.

[67]  A. Smit,et al.  Tiggers and DNA transposon fossils in the human genome. , 1996, Proceedings of the National Academy of Sciences of the United States of America.