A Process-Tolerant, Low-Voltage, Inverter-Based OTA for Continuous-Time $\Sigma $ – $\Delta $ ADC

Inverter-based implementation of operational-transconductance amplifiers is an attractive approach for low-voltage realization of analog subsystems. However, the high sensitivity of inverterlike amplifiers' performance to process and temperature variations limit the achievable performance of the whole system across process and temperature corners. In this paper, a tuning technique is proposed to maintain the inverterbased amplifier performance across the process and temperature corners without requiring additional voltage headroom than that required by the inverter circuit. The introduced technique is used to implement a third-order continuous-time sigma-delta (Σ-Δ) analog-to-digital converter (ADC). The main building block of the implemented ADC is an inverter-based amplifier. This makes the resulting Σ-Δ ADC easier to scale to different technology nodes. A 74-dB signal-to-noise and distortion ratio is achieved, for a signal bandwidth of 64 kHz at a sampling frequency of 6.4 MHz, while consuming 400 μA from a 0.8 V supply in 65-nm CMOS technology.

[1]  Bram Nauta,et al.  A CMOS transconductance-C filter technique for very high frequencies , 1992 .

[2]  Toshimasa Matsuoka,et al.  A 0.5 V feedforward delta-sigma modulator with inverter-based integrator , 2009, 2009 Proceedings of ESSCIRC.

[3]  A. Essawy,et al.  A low voltage inverter-based continuous-time sigma delta analog-to-digital converter in 65nm CMOS technology , 2014, 2014 IEEE Faible Tension Faible Consommation.

[4]  R. G. Vieru,et al.  An ultra low voltage Sigma Delta modulator with inverter based scalable amplifier , 2012, 2012 10th International Symposium on Electronics and Telecommunications.

[5]  Kong-Pang Pun,et al.  A 0.5-V 74-dB SNDR 25-kHz Continuous-Time Delta-Sigma Modulator With a Return-to-Open DAC , 2007, IEEE Journal of Solid-State Circuits.

[6]  Youngcheol Chae,et al.  Low Voltage, Low Power, Inverter-Based Switched-Capacitor Delta-Sigma Modulator , 2009, IEEE J. Solid State Circuits.

[7]  Gabor C. Temes,et al.  Understanding Delta-Sigma Data Converters , 2004 .

[8]  Maurits Ortmanns,et al.  Continuous time sigma-delta A/D conversion : fundamentals, performance limits and robust implementations , 2006 .

[9]  Yan Han,et al.  A 0.8-V 230-$\mu$ W 98-dB DR Inverter-Based $\Sigma \Delta$ Modulator for Audio Applications , 2013, IEEE Journal of Solid-State Circuits.

[10]  W. Snelgrove,et al.  Excess loop delay in continuous-time delta-sigma modulators , 1999 .

[11]  Olivier Rossetto,et al.  A 0.5V 94dB SNR CT-ΣΔ modulator for implantable and portable biomedical devices , 2010, 2010 17th IEEE International Conference on Electronics, Circuits and Systems.

[12]  Takeshi Ueno,et al.  A 0.9 V 1.5 mW Continuous-Time Modulator for W-CDMA , 2005, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[13]  Yong Lian,et al.  A 0.6-V 82-dB 28.6- $\mu$W Continuous-Time Audio Delta-Sigma Modulator , 2011, IEEE Journal of Solid-State Circuits.

[14]  O. Oliaei,et al.  Design of continuous-time sigma-delta modulators with arbitrary feedback waveform , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[15]  Michiel Steyaert,et al.  A 250 mV 7.5 μW 61 dB SNDR SC ΔΣ Modulator Using Near-Threshold-Voltage-Biased Inverter Amplifiers in 130 nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[16]  Robert Weigel,et al.  A 0.039 mm$^2$ Inverter-Based 1.82 mW 68.6$~$ dB-SNDR 10 MHz-BW CT-$\Sigma\Delta$ -ADC in 65 nm CMOS Using Power- and Area-Efficient Design Techniques , 2014, IEEE Journal of Solid-State Circuits.

[17]  Melanie Hartmann,et al.  Design Of Analog Cmos Integrated Circuits , 2016 .