Role of STIM and Orai proteins in the store-operated calcium signaling pathway.

[1]  Y. Gwack,et al.  Biochemical and Functional Characterization of Orai Proteins* , 2007, Journal of Biological Chemistry.

[2]  Y. Gwack,et al.  Dynamic Assembly of TRPC1-STIM1-Orai1 Ternary Complex Is Involved in Store-operated Calcium Influx , 2007, Journal of Biological Chemistry.

[3]  E. Yildirim,et al.  Orai proteins interact with TRPC channels and confer responsiveness to store depletion , 2007, Proceedings of the National Academy of Sciences.

[4]  R. Tsien,et al.  A hexahistidine-Zn2+-dye label reveals STIM1 surface exposure , 2007, Proceedings of the National Academy of Sciences.

[5]  M. Ikura,et al.  Stored Ca2+ Depletion-induced Oligomerization of Stromal Interaction Molecule 1 (STIM1) via the EF-SAM Region , 2006, Journal of Biological Chemistry.

[6]  M. Iino,et al.  Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum , 2006, Proceedings of the National Academy of Sciences.

[7]  J. Soboloff,et al.  Calcium signals mediated by STIM and Orai proteins--a new paradigm in inter-organelle communication. , 2006, Biochimica et biophysica acta.

[8]  J. Billingsley,et al.  CRACM1 Multimers Form the Ion-Selective Pore of the CRAC Channel , 2006, Current Biology.

[9]  G. Salido,et al.  Interaction of STIM1 with Endogenously Expressed Human Canonical TRP1 upon Depletion of Intracellular Ca2+ Stores* , 2006, Journal of Biological Chemistry.

[10]  Y. Gwack,et al.  Orai1 is an essential pore subunit of the CRAC channel , 2006, Nature.

[11]  Shenyuan L. Zhang,et al.  Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai , 2006, Nature.

[12]  JoAnn Buchanan,et al.  The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER–plasma membrane junctions , 2006, The Journal of cell biology.

[13]  JoAnn Buchanan,et al.  Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane , 2006, The Journal of cell biology.

[14]  Joseph P. Yuan,et al.  STIM1 carboxyl-terminus activates native SOC, Icrac and TRPC1 channels , 2006, Nature Cell Biology.

[15]  Rebecca R. Boyles,et al.  Large Store-operated Calcium Selective Currents Due to Co-expression of Orai1 or Orai2 with the Intracellular Calcium Sensor, Stim1* , 2006, Journal of Biological Chemistry.

[16]  J. Soboloff,et al.  Orai1 and STIM Reconstitute Store-operated Calcium Channel Function* , 2006, Journal of Biological Chemistry.

[17]  J. Soboloff,et al.  STIM2 Is an Inhibitor of STIM1-Mediated Store-Operated Ca2+ Entry , 2006, Current Biology.

[18]  X. Zhang,et al.  Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  M. Nadler,et al.  Amplification of CRAC current by STIM1 and CRACM1 (Orai1) , 2006, Nature Cell Biology.

[20]  J. Kinet,et al.  CRACM1 Is a Plasma Membrane Protein Essential for Store-Operated Ca2+ Entry , 2006, Science.

[21]  Bogdan Tanasa,et al.  A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function , 2006, Nature.

[22]  J. Soboloff,et al.  STIM1 has a plasma membrane role in the activation of store-operated Ca(2+) channels. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  T. Deerinck,et al.  STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane , 2005, Nature.

[24]  Tobias Meyer,et al.  STIM Is a Ca2+ Sensor Essential for Ca2+-Store-Depletion-Triggered Ca2+ Influx , 2005, Current Biology.

[25]  S. Wagner,et al.  STIM1, an essential and conserved component of store-operated Ca2+ channel function , 2005, The Journal of cell biology.

[26]  J. Putney,et al.  Store-operated calcium channels. , 2005, Physiological reviews.

[27]  M. Berridge,et al.  Conformational Coupling: A Physiological Calcium Entry Mechanism , 2004, Science's STKE.

[28]  J. Putney The enigmatic TRPCs: multifunctional cation channels. , 2004, Trends in cell biology.

[29]  K. Venkatachalam,et al.  Modification of phospholipase C-gamma-induced Ca2+ signal generation by 2-aminoethoxydiphenyl borate. , 2003, The Biochemical journal.

[30]  M. Berridge,et al.  Calcium: Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature Reviews Molecular Cell Biology.

[31]  K. Venkatachalam,et al.  The cellular and molecular basis of store-operated calcium entry , 2002, Nature Cell Biology.

[32]  R. Williams,et al.  Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by N-linked glycosylation. , 2002, Biochimica et biophysica acta.

[33]  J. Parys,et al.  Modification of Store-operated Channel Coupling and Inositol Trisphosphate Receptor Function by 2-Aminoethoxydiphenyl Borate in DT40 Lymphocytes* , 2002, The Journal of Biological Chemistry.

[34]  Richard S Lewis,et al.  Potentiation and inhibition of Ca2+ release‐activated Ca2+ channels by 2‐aminoethyldiphenyl borate (2‐APB) occurs independently of IP3 receptors , 2001, The Journal of physiology.

[35]  Philip Smith,et al.  Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. , 2001, The Biochemical journal.

[36]  J. Putney,et al.  Mechanisms of capacitative calcium entry. , 2001, Journal of cell science.

[37]  O. Andersen,et al.  Inclusion-induced bilayer deformations: effects of monolayer equilibrium curvature. , 2000, Biophysical journal.

[38]  M. Berridge,et al.  The versatility and universality of calcium signalling , 2000, Nature Reviews Molecular Cell Biology.

[39]  Philip Smith,et al.  STIM1: a novel phosphoprotein located at the cell surface. , 2000, Biochimica et biophysica acta.

[40]  R. Patterson,et al.  Store-Operated Ca2+ Entry Evidence for a Secretion-like Coupling Model , 1999, Cell.

[41]  C. Croce,et al.  Exon structure and promoter identification of STIM1 (alias GOK), a human gene causing growth arrest of the human tumor cell lines G401 and RD , 1999, Cytogenetic and Genome Research.

[42]  Peter J. Smith,et al.  Murine Stim1 maps to distal Chromosome 7 and is not imprinted , 1998, Mammalian Genome.

[43]  C. Croce,et al.  GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. , 1997, Cancer research.

[44]  R. Penner,et al.  Store depletion and calcium influx. , 1997, Physiological reviews.

[45]  C. Begley,et al.  Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5. , 1996, Genomics.

[46]  K. Oritani,et al.  Identification of stromal cell products that interact with pre-B cells , 1996, The Journal of cell biology.

[47]  M. Berridge,et al.  Capacitative calcium entry. , 1995, The Biochemical journal.

[48]  R. Irvine ‘Quanta’ Ca2+ release and the control of Ca2+ entry by inositol phosphates ‐ a possible mechanism , 1990, FEBS letters.