Acid blobs and negative noodles

[1]  M. Ptashne,et al.  GAL4 activates gene expression in mammalian cells , 1988, Cell.

[2]  C. Ingles,et al.  The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential function , 1988, Molecular and cellular biology.

[3]  M. Bartolomei,et al.  Genetic analysis of the repetitive carboxyl-terminal domain of the largest subunit of mouse RNA polymerase II , 1988, Molecular and cellular biology.

[4]  M. Ptashne,et al.  Transcription in yeast activated by a putative amphipathic α helix linked to a DNA binding unit , 1987, Nature.

[5]  Mark Ptashne,et al.  Mutants of GAL4 protein altered in an activation function , 1987, Cell.

[6]  M. Dahmus,et al.  Messenger RNA synthesis in mammalian cells is catalyzed by the phosphorylated form of RNA polymerase II. , 1987, The Journal of biological chemistry.

[7]  Kevin Struhl,et al.  Promoters, activator proteins, and the mechanism of transcriptional initiation in yeast , 1987, Cell.

[8]  Jun Ma,et al.  Deletion analysis of GAL4 defines two transcriptional activating segments , 1987, Cell.

[9]  K. Struhl,et al.  Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of Yeast , 1986, Cell.

[10]  J. Ahearn,et al.  A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Brent,et al.  A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor , 1985, Cell.

[12]  Michael Shales,et al.  Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases , 1985, Cell.