Modeling the densification of polar firn including heat diffusion: Application to close‐off characteristics and gas isotopic fractionation for Antarctica and Greenland sites

[1] Modeling the densification of polar firn is essential to estimate variations of close-off characteristics (density, close-off depth, delta age) in relation with past climate parameters (temperature and accumulation rates). Furthermore, the air composition in the firn is modified by gravitational and thermal fractionation, and stable isotope measurements of permanent gases like nitrogen or argon can provide information on the amplitude of these fractionations. In this work, we propose a new model coupling firn densification and heat diffusion. In addition to the determination of the firn thickness and gas-ice age differences, the model allows a reconstruction of the time evolution of the temperature for different sites in Antarctica (Vostok) and Greenland (GISP2) and therefore the evolution of gravitational and thermal isotopic fractionations in firn. Under present-day conditions, the modeled profiles are in good agreement with the available temperature measurements in firn. For sites with low accumulation rates such as Vostok, the results show the existence of temperature gradients in the firn column even when no rapid climatic changes occur. The comparison of the modeled δ15N results to measurements allows to better constrain the δ18O-temperature relationship, used to infer the surface temperature history, and for GISP2, the model validates the long-term borehole-based temperature.

[1]  J. Severinghaus,et al.  Determining the Thermal Diffusion Factor for 40Ar/36Ar in Air To Aid Paleoreconstruction of Abrupt Climate Change , 2003 .

[2]  J. Severinghaus,et al.  A method for precise measurement of argon 40/36 and krypton/argon ratios in trapped air in polar ice with applications to past firn thickness and abrupt climate change in Greenland and at Siple Dome, Antarctica , 2003 .

[3]  J. Severinghaus,et al.  Laboratory determination of thermal diffusion constants for 29N2/28N2 in air at temperatures from −60 to 0°C for reconstruction of magnitudes of abrupt climate changes using the ice core fossil–air paleothermometer , 2003 .

[4]  J. Severinghaus,et al.  Estimation of temperature change and of gas age‐ice age difference, 108 kyr B.P., at Vostok, Antarctica , 2001 .

[5]  R. Alley,et al.  Preliminary firn-densification model with 38-site dataset , 2001, Journal of Glaciology.

[6]  H. Renssen,et al.  The two major warming phases of the last deglaciation at ; 14.7 and ; 11.5 ka cal BP in Europe: climate reconstructions and AGCM experiments , 2001 .

[7]  E. Brook,et al.  Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. , 2001, Science.

[8]  T. Shiraiwa,et al.  Modelling dynamics of glaciers in volcanic craters , 2000 .

[9]  J. Barnola,et al.  Determination of gas diffusivity in polar firn: Comparison between experimental measurements and inverse modeling , 2000 .

[10]  Paul Duval,et al.  Physical modeling of the densification of snow/firn and ice in the upper part of polar ice sheets , 2000 .

[11]  M. Leuenberger,et al.  16°C Rapid Temperature Variation in Central Greenland 70,000 Years Ago , 1999 .

[12]  Brook,et al.  Abrupt climate change at the end of the last glacial period inferred from trapped air in polar Ice , 1999, Science.

[13]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[14]  A. Rossi,et al.  Apparatus for routine measurements of the thermal conductivity of ice cores , 1999, Annals of Glaciology.

[15]  T. Stocker,et al.  Asynchrony of Antarctic and Greenland climate change during the last glacial period , 1998, Nature.

[16]  M. Siegert,et al.  An analysis of the ice‐sheet surface and subsurface topography above the Vostok Station subglacial lake, central East Antarctica , 1998 .

[17]  J. Jouzel,et al.  Ice core age dating and paleothermometer calibration based on isotope and temperature profiles from deep boreholes at Vostok Station (East Antarctica) , 1998 .

[18]  J. Severinghaus,et al.  Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice , 1998, Nature.

[19]  D. Etheridge,et al.  An interlaboratory comparison of techniques for extracting and analyzing trapped gases in ice cores , 1997 .

[20]  Gary D. Clow,et al.  Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition , 1997 .

[21]  D. Dahl-Jensen,et al.  Ice flow between the Greenland Ice Core Project and Greenland Ice Sheet Project 2 boreholes in central Greenland , 1997 .

[22]  R. Alley,et al.  Validity of the temperature reconstruction from water isotopes , 1997 .

[23]  J. Jouzel,et al.  GCM analysis of local influences on ice core δ signals , 1997 .

[24]  J. Schwander,et al.  Age scale of the air in the summit ice: Implication for glacial-interglacial temperature change , 1997 .

[25]  L. Arnaud Modélisation de la transformation de la neige en glace à la surface des calottes polaires : étude du transport des gaz dans ces milieux poreux , 1997 .

[26]  P. M. Lang,et al.  Atmospheric gas concentrations over the past century measured in air from firn at the South Pole , 1996, Nature.

[27]  R. Saltus,et al.  A new high-precision borehole-temperature logging system used at GISP2, Greenland, and Taylor Dome, Antarctica , 1996, Journal of Glaciology.

[28]  W. Dansgaard,et al.  Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles , 1995 .

[29]  Richard B. Alley,et al.  Large Arctic Temperature Change at the Wisconsin-Holocene Glacial Transition , 1995, Science.

[30]  R. Alley,et al.  The effect of ice-sheet thickness change on the accumulation history inferred from GISP2 layer thicknesses , 1995, Annals of Glaciology.

[31]  R. Saltus,et al.  High-Precision Temperature Logging at GISP2, Greenland, May 1992 , 1995 .

[32]  P. Mayewski,et al.  Climate correlations between Greenland and Antarctica during the past 100,000 years , 1994, Nature.

[33]  V. Lipenkov,et al.  Air content paleo record in the Vostok ice core (Antarctica): A mixed record of climatic and glaciological parameters , 1994 .

[34]  N. Gundestrup,et al.  The UCPH borehole logger , 1994 .

[35]  O. Castelnau,et al.  Simulations of anisotropy and fabric development in polar ices , 1994, Annals of Glaciology.

[36]  Andrey N. Salamatin,et al.  Vostok (Antarctica) climate record time-scale deduced from the analysis of a borehole- temperature profile , 1994 .

[37]  R. Saltus,et al.  Deconvolution of continuous borehole temperature logs : example from the Greenland GISP2 icecore hole , 1994 .

[38]  J. Jouzel,et al.  Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores , 1993, Nature.

[39]  D. Raynaud,et al.  δ15N of N2 in air trapped in polar ice: A tracer of gas transport in the firn and a possible constraint on ice age-gas age differences , 1992 .

[40]  D. Etheridge,et al.  Physical and climatic parameters which influence the air content in polar ice , 1992 .

[41]  C. Ritz Un modèle thermo-mécanique d'évolution pour le bassin glaciaire antarctique Vostok - glacier Byrd : sensibilité aux valeurs des paramètres mal connus , 1992 .

[42]  Dominique Raynaud,et al.  CO2-climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating , 1991 .

[43]  R. Alley,et al.  Recent Warming in Central Greenland , 1990 .

[44]  J. White,et al.  The origin of Arctic precipitation under present and glacial conditions , 1989 .

[45]  D. Raynaud,et al.  Elemental and isotopic composition of occluded O2 and N2 in polar ice , 1989 .

[46]  C. Ritz Interpretation of the Temperature Profile Measured at Vostok, East Antarctica , 1989, Annals of Glaciology.

[47]  H. Craig,et al.  Gravitational Separation of Gases and Isotopes in Polar Ice Caps , 1988, Science.

[48]  T. Staudacher,et al.  Recycling of oceanic crust and sediments: the noble gas subduction barrier , 1988 .

[49]  P. Pimienta,et al.  RATE CONTROLLING PROCESSES IN THE CREEP OF POLAR GLACIER ICE , 1987 .

[50]  Richard B. Alley,et al.  FIRN DENSIFICATION BY GRAIN-BOUNDARY SLIDING : A FIRST MODEL , 1987 .

[51]  T. Ebinuma,et al.  PARTICLE REARRANGEMENT AND DISLOCATION CREEP IN A SNOW-DENSIFICATION PROCESS , 1987 .

[52]  P. Pimienta Etude du comportement mécanique des glaces polycristallines aux faibles contraintes : applications aux glaces des calottes polaires , 1987 .

[53]  A. Mariotti Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements , 1983, Nature.

[54]  M. Ashby,et al.  Practical applications of hotisostatic Pressing diagrams: Four case studies , 1983 .

[55]  Hellmut F. Fischmeister,et al.  Densification of Powders by Particle Deformation , 1983 .

[56]  C. Raymond Deformation in the Vicinity of Ice Divides , 1983, Journal of Glaciology.

[57]  E. Arzt The influence of an increasing particle coordination on the densification of spherical powders , 1982 .

[58]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[59]  Michael M. Herron,et al.  Firn Densification: An Empirical Model , 1980, Journal of Glaciology.

[60]  M. Ashby,et al.  Pressure sintering by power law creep , 1975 .

[61]  G. Weller,et al.  Short Notes: New Data on the Thermal Conductivity of Natural Snow , 1971, Journal of Glaciology.

[62]  W. Dansgaard Stable isotopes in precipitation , 1964 .

[63]  H. Bader Density of ice as a function of temperature and stress , 1964 .

[64]  W. Dansgaard The Abundance of O18 in Atmospheric Water and Water Vapour , 1953 .