Sickle cell hemoglobin polymerization.

Publisher Summary The chapter describes the understanding of the physics and physical chemistry of sickle cell hemoglobin polymerization in solutions and in red cells. The polymerization of sickle cell hemoglobin has probably become the best understood of all protein self-assembly systems. The structure of the hemoglobin S molecule, the structure of the various aggregated forms of hemoglobin S, and the structural analysis of the polymers are discussed in the chapter. The chapter discusses the thermodynamics of hemoglobin S polymerization, and includes a description of the nonideal behavior of concentrated hemoglobin S solutions and the effects of physiologically relevant variables, especially oxygen, and the presence of non-S hemoglobins on the polymerization process. Understanding the polymerization process is not only important for understanding the pathophysiology of sickle cell disease, but is critical to the major problem of developing a specific therapy that could be used in the treatment of patients. The kinetic and thermodynamic studies have played a major role by providing relevant and sensitive assays for potential therapeutic agents. The results of the thermodynamic and kinetic studies of solutions are used to explain various properties of cells, including morphological and rheological properties.

[1]  H. Bunn The interaction of sickle hemoglobin with DPG, CO 2 and with other hemoglobins: formation of asymmetrical hybrids. , 1972, Advances in experimental medicine and biology.

[2]  C. Ho,et al.  A proton nuclear magnetic resonance investigation of histidyl residues in sickle hemoglobin. , 1982, Biochemistry.

[3]  B. Heagan,et al.  Gels of normal and sickled hemoglobin: comparative study. , 1970 .

[4]  R. Nagel,et al.  Kinetics of HB S gelation. Effect of alkylureas, ionic strength and other hemoglobins. , 1978, Biochimica et biophysica acta.

[5]  J. Hofrichter,et al.  Comparison of sickle cell hemoglobin gelation kinetics measured by NMR and optical methods. , 1976, Biochemical and biophysical research communications.

[6]  S. Edelstein,et al.  Oblique alignment of hemoglobin S fibers in sickled cells. , 1979, Journal of molecular biology.

[7]  L. Lessin,et al.  Deformability of Normal and Sickle Erythrocytes in a Pressure-flow Filtration System , 1978 .

[8]  E. Huehns,et al.  The Concentration Dependence of the Oxygen Affinity of Haemoglobin S , 1975, British journal of haematology.

[9]  W Groner,et al.  New optical technique for measuring erythrocyte deformability with the ektacytometer. , 1980, Clinical chemistry.

[10]  B. Kim,et al.  The effect of 2,3-diphosphoglycerate on the solubility of deoxyhemoglobin S. , 1986, Archives of biochemistry and biophysics.

[11]  R. Nagel,et al.  Erythrocytes in sickle cell anemia are heterogeneous in their rheological and hemodynamic characteristics. , 1983, The Journal of clinical investigation.

[12]  A. Minton Excluded volume as a determinant of macromolecular structure and reactivity , 1981 .

[13]  S. Chien,et al.  Effect of deoxygenation on blood rheology in sickle cell disease. , 1975, Microvascular research.

[14]  R. Bookchin,et al.  Determinants of red cell sickling. Effects of varying pH and of increasing intracellular hemoglobin concentration by osmotic shrinkage. , 1976, The Journal of laboratory and clinical medicine.

[15]  Y. Lecarpentier,et al.  Femtosecond photolysis of CO-ligated protoheme and hemoproteins: appearance of deoxy species with a 350-fsec time constant. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Edalji,et al.  alpha Chain mutations with opposite effects on the gelation of hemoglobin S. , 1979, The Journal of biological chemistry.

[17]  Harris Jw,et al.  The kinetics of the sol-gel transformation of deoxyhemoglobin S by continuous monitoring of viscosity. , 1975 .

[18]  J. Hofrichter Kinetics of sickle hemoglobin polymerization. III. Nucleation rates determined from stochastic fluctuations in polymerization progress curves. , 1986, Journal of molecular biology.

[19]  T. Huisman,et al.  Amino-Acid Composition of Four Different Kinds of Human Hæmoglobin , 1955, Nature.

[20]  R. Josephs,et al.  Structural analysis of polymers of sickle cell hemoglobin. III. Fibers within fascicles. , 1988, Journal of molecular biology.

[21]  E. Henry,et al.  Nanosecond absorption spectroscopy of hemoglobin: elementary processes in kinetic cooperativity. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Philip J. Stephens,et al.  Optical spectra of oxy- and deoxyhemoglobin , 1978 .

[23]  E. Hahn,et al.  SICKLE CELL ANEMIA: REPORT OF A CASE GREATLY IMPROVED BY SPLENECTOMY. EXPERIMENTAL STUDY OF SICKLE CELL FORMATION , 1927 .

[24]  I. Wells,et al.  Amino acid composition of hemoglobins of normal Negroes and sickle-cell anemics. , 1950, The Journal of biological chemistry.

[25]  A. Minton Thermodynamic analysis of the chemical inhibition of sickle-cell hemoglobin gelation. , 1975, Journal of molecular biology.

[26]  E. Mann,et al.  Hemoglobin S polymerization. Fiber lengths, rheology, and pathogenesis. , 1989, Annals of the New York Academy of Sciences.

[27]  M. Perutz,et al.  Structure of human deoxy cobalt haemoglobin. , 1982, Journal of molecular biology.

[28]  R. V. Andrews,et al.  Quantitative studies on the flicker phenomenon in the erythrocytes. , 1968, Blood.

[29]  K. Adachi,et al.  Mechanical stability of hemoglobin subunits: an abnormality in betaS-subunits of sickle hemoglobin. , 1974, Biochemical and biophysical research communications.

[30]  S. Balcerzak,et al.  Viscometric and spectrophotometric measurements of hemoglobin S polymerization kinetics. , 1984, Blood.

[31]  P. S. Biagio,et al.  Photon scattering as a probe of microviscosity and channel size in gels such as sickle haemoglobin , 1983, Nature.

[32]  R. Josephs,et al.  Polymorphic assemblies of double strands of sickle cell hemoglobin. Manifold pathways of deoxyhemoglobin S crystallization. , 1981, Journal of molecular biology.

[33]  R. Simmons,et al.  Red cell filtration and the pathogenesis of certain hemolytic anemias. , 1961, Blood.

[34]  S Chien,et al.  Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. , 1978, Biophysical journal.

[35]  R. Griggs,et al.  The biophysics of the variants of sickle-cell disease. , 1956, A.M.A. archives of internal medicine.

[36]  A. Minton Thermodynamic nonideality and the dependence of partition coefficient upon solute concentration in exclusion chromatography. Application to self-associating and non-self-associating solutes. Application to hemoglobin. , 1980, Biophysical chemistry.

[37]  M. Perutz,et al.  X-Ray and Solubility Studies of the Hæmoglobin of Sickle-Cell Anæmia Patients , 1951, Nature.

[38]  J. Bertles,et al.  Hemoglobin Interaction: Modification of Solid Phase Composition in the Sickling Phenomenon , 1970, Science.

[39]  Makio Murayama,et al.  Molecular Mechanism of Red Cell "Sickling" , 1966, Science.

[40]  T. Asakura,et al.  Relationship between morphologic characteristics of sickle cells and method of deoxygenation. , 1984, The Journal of laboratory and clinical medicine.

[41]  A. Minton A thermodynamic model for gelation of sickle-cell hemoglobin. , 1974, Journal of molecular biology.

[42]  S. Chien Principles and Techniques for Assessing Erythrocyte Deformability , 1978 .

[43]  E. Wajnberg,et al.  Rotation of sickle cells in homogeneous magnetic fields. , 1981, Biophysical journal.

[44]  C Chothia,et al.  Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. , 1979, Journal of molecular biology.

[45]  V. Ingram,et al.  A Specific Chemical Difference Between the Globins of Normal Human and Sickle-Cell Anæmia Hæmoglobin , 1956, Nature.

[46]  B. Magdoff-Fairchild,et al.  X-ray diffraction studies of fibers and crystals of deoxygenated sickle cell hemoglobin. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J. Harris,et al.  Studies on the destruction of red blood cells. X. The biophysics and biology of sickle-cell disease. , 1956, A.M.A. archives of internal medicine.

[48]  R. Berger,et al.  Continuous determination of the oxygen dissociation curve for whole blood. , 1975, Clinical chemistry.

[49]  K. B. Ward,et al.  Crystal structure of sickle-cell deoxyhemoglobin at 5 A resolution. , 1975, Journal of molecular biology.

[50]  J. Hofrichter,et al.  SUCCESSES AND FAILURES OF A SIMPLE NUCLEATION THEORY FOR SICKLE CELL HEMOGLOBIN GELATION , 1978 .

[51]  The solubility of hemoglobins A and S reconstituted with various metalloporphyrins. , 1982, Hemoglobin.

[52]  K. Adachi,et al.  Polymerization of deoxyhemoglobin CHarlem (β6 Glu → Val, β73 Asp → Asn): The effect of β73 asparagine on the gelation and crystallization of hemoglobin , 1980 .

[53]  A. Schechter,et al.  Determination of deoxyhemoglobin S polymer in sickle erythrocytes upon deoxygenation. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[54]  A. Minton,et al.  Temperature dependence of nonideality in concentrated solutions of hemoglobin. , 1978, Biopolymers.

[55]  R. Nagel,et al.  Hemoglobin S Travis: a Sickling Hemoglobin with Two Amino Acid Substitutions [β6(A3)Glutamic Acid → Valine and β 142(H20) Alanine → Valine] , 1977 .

[56]  L. P. Murray,et al.  The effect of quaternary structure on the kinetics of conformational changes and nanosecond geminate rebinding of carbon monoxide to hemoglobin. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[57]  K. Adachi,et al.  Nucleation-controlled aggregation of deoxyhemoglobin S. Participation of hemoglobin A in the aggregation of deoxyhemoglobin S in concentrated phosphate buffer. , 1980, The Journal of biological chemistry.

[58]  J. England,et al.  Determinants of Haemoglobin Level in Sickle Cell‐Haemoglobin C Disease , 1979, British journal of haematology.

[59]  S Chien,et al.  Deformability of sickle cells as studied by microsieving. , 1975, The Journal of laboratory and clinical medicine.

[60]  R M Hochmuth,et al.  Sickling times of individual erythrocytes at zero Po2. , 1975, The Journal of clinical investigation.

[61]  J. Harris,et al.  Rheologic behavior of deoxyhemoglobin S gels. , 1987, Journal of molecular biology.

[62]  P. L. Agarwal,et al.  Mechanical Instability of the Oxy-form of Sickle Haemoglobin , 1973, Nature.

[63]  R. Briehl,et al.  Effects of pH, 2,3-diphosphoglycerate and salts on gelation of sickle cell deoxyhemoglobin. , 1973, Journal of molecular biology.

[64]  J. Hofrichter,et al.  Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques. , 1985, Journal of molecular biology.

[65]  N. Go,et al.  Dynamics of a small globular protein in terms of low-frequency vibrational modes. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[66]  R. Josephs,et al.  Crystallization of deoxyhemoglobin S by fiber alignment and fusion. , 1979, Journal of molecular biology.

[67]  J. M. Salhany,et al.  Gelation of sickle hemoglobin. III. Nitrosyl hemoglobin. , 1975, Journal of molecular biology.

[68]  H. Bunn,et al.  Asymmetrical hemoglobin hybrids. An approach to the study of subunit interactions. , 1974, Biochemistry.

[69]  S Chien,et al.  Abnormal rheology of oxygenated blood in sickle cell anemia. , 1970, The Journal of clinical investigation.

[70]  G. Dover,et al.  Individual variation in the production and survival of F cells in sickle-cell disease. , 1978, The New England journal of medicine.

[71]  H. Scheraga,et al.  Entropy changes accompanying association reactions of proteins. , 1963, The Journal of biological chemistry.

[72]  S. Edelstein,et al.  Three-dimensional reconstruction of the fibres of sickle cell haemoglobin , 1978, Nature.

[73]  R. Edalji,et al.  Oxygen affinity as an index of hemoglobin S polymerization: a new micromethod. , 1978, Analytical biochemistry.

[74]  J. Hanson,et al.  INTERMOLECULAR INTERACTIONS IN CRYSTALS OF HUMAN DEOXY HEMOGLOBINS A, C, F AND S , 1978 .

[75]  I. Wells,et al.  Ratio of sickle-cell anemia hemoglobin to normal hemoglobin in sicklemics. , 1951, The Journal of biological chemistry.

[76]  S. Edelstein Molecular topology in crystals and fibers of hemoglobin S. , 1981, Journal of molecular biology.

[77]  M. Perutz,et al.  Molecular Pathology of Human Haemoglobin , 1968, Nature.

[78]  J. Hoffman,et al.  Flicker in erythrocytes; vibratory movements in the cytoplasm. , 1956, Journal of cellular and comparative physiology.

[79]  M. Waterman,et al.  Kinetics of the polymerization of hemoglobin S: studies below normal erythrocyte hemoglobin concentration. , 1976, Biochemical and biophysical research communications.

[80]  Q H Gibson,et al.  Quaternary conformational changes in human hemoglobin studied by laser photolysis of carboxyhemoglobin. , 1976, The Journal of biological chemistry.

[81]  R. Nagel,et al.  Ligand-induced conformational dependence of hemoglobin in sickling interactios. , 1971, Journal of molecular biology.

[82]  K. Singer,et al.  Studies on abnormal hemoglobins. VIII. The gelling phenomenon of sickle cell hemoglobin: its biologic and diagnostic significance. , 1953, Blood.

[83]  G. Delpech,et al.  Sickle cell shape and structure: images and concepts (1840-1980). , 1982, Blood cells.

[84]  R. Benesch,et al.  The effects of α chain mutations cis and trans to the β6 mutation on the polymerization of sickle cell haemoglobin , 1982, Nature.

[85]  J. Bertles,et al.  Thermodynamic studies of polymerization of deoxygenated sickle cell hemoglobin. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[86]  D. Tosteson,et al.  Regulation of erythrocyte cation and water content in sickle cell anemia. , 1986, Science.

[87]  A Leung,et al.  Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration. , 1984, The Journal of clinical investigation.

[88]  R. Hochstrasser,et al.  Single-crystal spectra of ferrimyoglobin complexes in polarized light. , 1968, The Journal of chemical physics.

[89]  R. Edalji,et al.  Intermolecular effects in the polymerization of hemoglobin S. , 1978, Biochemical and biophysical research communications.

[90]  M. Goldberg,et al.  Participation of hemoglobins A and F in polymerization of sickle hemoglobin. , 1977, The Journal of biological chemistry.

[91]  Kaspar H. Winterhalter,et al.  Chromatographic isolation and characterization of isolated chains from hemoglobin after regeneration of sulfhydryl groups. , 1971, Biochemistry.

[92]  D W Ross,et al.  The effect of cell hydration on the deformability of normal and sickle erythrocytes , 1982, American journal of hematology.

[93]  J. Bertles,et al.  Intermolecular Organization of Deoxygenated Sickle Haemoglobin determined by X-ray Diffraction , 1972, Nature.

[94]  G. Adair A theory of partial osmotic pressures and membrane equilibria, with special reference to the application of Dalton's Law to hæmoglobin solutions in the presence of salts , 1928 .

[95]  M. Behe,et al.  Mixed gelation theory. Kinetics, equilibrium and gel incorporation in sickle hemoglobin mixtures. , 1979, Journal of molecular biology.

[96]  F. Ferrone,et al.  Kinetics of domain formation by sickle hemoglobin polymers. , 1988, Biophysical journal.

[97]  M. Levitt,et al.  Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. , 1985, Journal of molecular biology.

[98]  A. Schechter,et al.  Polymerization of hemoglobin in sickle trait erythrocytes and lysates. , 1981, The Journal of biological chemistry.

[99]  A. Szabó,et al.  Kinetics of hemoglobin and transition state theory. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[100]  B. Kim,et al.  Deoxygenated sickle hemoglobin. Modulation of its solubility by 2,3-diphosphoglycerate and other allosteric polyanions. , 1985, The Journal of biological chemistry.

[101]  J. White Ultrastructural features of erythrocyte and hemoglobin sickling. , 1974, Archives of internal medicine.

[102]  S. Edelstein,et al.  Patterns in the quinary structures of proteins. Plasticity and inequivalence of individual molecules in helical arrays of sickle cell hemoglobin and tubulin. , 1980, Biophysical journal.

[103]  Ben F. Luisi,et al.  Stereochemistry of cooperative mechanisms in hemoglobin , 1987 .

[104]  William A. Eaton,et al.  Editorial: Delay time of gelation: a possible determinant of clinical severity in sickle cell disease , 1976 .

[105]  A. Minton Solubility relationships in binary mixtures of hemoglobin variants Application to the "gelationrd of sickle-cell hemoglobin. , 1974, Biophysical chemistry.

[106]  R. Williams Concerted formation of the gel of hemoglobin S. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[107]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[108]  S. Rothenberg,et al.  Sickle cell crisis. , 1973, The Medical clinics of North America.

[109]  E. Padlan,et al.  Refined crystal structure of deoxyhemoglobin S. II. Molecular interactions in the crystal. , 1985, The Journal of biological chemistry.

[110]  R. C. Cheetham,et al.  Participation of haemoglobins A, F, A2 and C in polymerisation of haemoglobin S. , 1979, Journal of molecular biology.

[111]  A. Schechter,et al.  Periodic microcirculatory flow in patients with sickle-cell disease. , 1984, The New England journal of medicine.

[112]  R. Briehl,et al.  Gelation of sickle cell haemoglobin. II. Methaemoglobin. , 1974, Journal of molecular biology.

[113]  J. Hofrichter,et al.  Calorimetric and optical characterization of sickle cell hemoglobin gelation. , 1975, Journal of molecular biology.

[114]  Messer Mj,et al.  Filtration characteristics of sickle cells: rates of alteration of filterability after deoxygenation and reoxygenation, and correlations with sickling and unsickling. , 1970 .

[115]  M. Waterman,et al.  EFFECTORS OF THE RATE OF DEOXYHEMOGLOBIN S POLYMERIZATION , 1978 .

[116]  N. Mohandas,et al.  Red blood cell deformability and hemolytic anemias. , 1979, Seminars in hematology.

[117]  G. K. Ackers,et al.  Experimental resolution of cooperative free energies for the ten ligation states of human hemoglobin. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[118]  J. White,et al.  Tubular polymers of normal human hemoglobin. , 1970, The American journal of pathology.

[119]  J. White,et al.  The fine structure of sickled hemoglobin in situ. , 1968, Blood.

[120]  R. Nagel,et al.  Structure and Properties of Hemoglobin Charlem, a Human Hemoglobin Variant with Amino Acid Substitutions in 2 Residues of the β-Polypeptide Chain , 1967 .

[121]  A. C. Allison Properties of sickle-cell haemoglobin. , 1957, The Biochemical journal.

[122]  J. Hofrichter,et al.  Supersaturation in sickle cell hemoglobin solutions. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[123]  S. Edelstein,et al.  Pairings and polarities of the 14 strands in sickle cell hemoglobin fibers. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[124]  A. Minton,et al.  Oxygen equilibrium of emulsified solutions of normal and sickle hemoglobin. , 1979, Biochemical and biophysical research communications.

[125]  L. C. Andrews,et al.  Location of amino acid residues in human deoxy hemoglobin. , 1978, Hemoglobin.

[126]  C. Noguchi Polymerization in erythrocytes containing S and non-S hemoglobins. , 1984, Biophysical journal.

[127]  T. Huisman Trimodality in Tie Percentages of β Chain Variants in Heterozy-Gotes: The Effect of the Number of Aczive HBα Structural Loci , 1977 .

[128]  A. Schechter,et al.  Carbon-13-proton nuclear magnetic double-resonance study of deoxyhemoglobin S gelation. , 1979, Biochemistry.

[129]  R. Josephs,et al.  Studies of the fiber to crystal transition of sickle cell hemoglobin in acidic polyethylene glycol. , 1982, Journal of molecular biology.

[130]  J. D. Bernal,et al.  X-RAY AND CRYSTALLOGRAPHIC STUDIES OF PLANT VIRUS PREPARATIONS. III , 1941, The Journal of general physiology.

[131]  B. Magdoff-Fairchild,et al.  X-ray diffraction studies of 14-filament models of deoxygenated sickle cell hemoglobin fibers. II. Models based on the deoxygenated sickle hemoglobin crystal structure. , 1988, Journal of molecular biology.

[132]  M. Perutz Stereochemistry of Cooperative Effects in Haemoglobin: Haem–Haem Interaction and the Problem of Allostery , 1970, Nature.

[133]  K. Adachi,et al.  Kinetics of the polymerization of hemoglobin in high and low phosphate buffers. , 1982, Blood cells.

[134]  B. Berne Interpretation of the light scattering from long rods. , 1974, Journal of molecular biology.

[135]  S. Charache,et al.  RATE OF SICKLING OF RED CELLS DURING DEOXYGENATION OF BLOOD FROM PERSONS WITH VARIOUS SICKLING DISORDERS. , 1964, Blood.

[136]  Structural analysis of polymers of sickle cell hemoglobin. III. Fibers within fascicles. , 1988, Journal of molecular biology.

[137]  J. White,et al.  The fine structure of cell-free sickled hemoglobin. , 1970, The American journal of pathology.

[138]  B. Magdoff-Fairchild,et al.  X-ray diffraction studies of 14-filament models of deoxygenated sickle cell hemoglobin fibers. Models based on electron micrograph reconstructions. , 1985, Journal of molecular biology.

[139]  P. Flory,et al.  Phase equilibria in solutions of rod-like particles , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[140]  A. Schechter,et al.  The intracellular polymerization of sickle hemoglobin and its relevance to sickle cell disease. , 1981, Blood.

[141]  C. Poyart,et al.  Cardiorespiratory adjustments in chronic sickle cell anemia. , 1983, Bulletin europeen de physiopathologie respiratoire.

[142]  S. Kowalczykowski,et al.  Kinetics of hemoglobin S gelation followed by continuously sensitive low-shear viscosity. , 1977, Journal of molecular biology.

[143]  A. Minton Non-ideality and the thermodynamics of sickle-cell hemoglobin gelation. , 1977, Journal of molecular biology.

[144]  D. Rucknagel,et al.  In vivo study of the sickle cell phenomenon. , 1960, The Journal of laboratory and clinical medicine.

[145]  V. Ingram Abnormal human haemoglobins. III. The chemical difference between normal and sickle cell haemoglobins. , 1959, Biochimica et biophysica acta.

[146]  M. Behe,et al.  Sickle hemoglobin gelation. Reaction order and critical nucleus size. , 1978, Biophysical journal.

[147]  M. Johnson,et al.  Saturation transfer electron paramagnetic resonance detection of sickle hemoglobin aggregation during deoxygenation. , 1983, Biophysical journal.

[148]  J. Hofrichter,et al.  Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[149]  M. W. Makinen,et al.  Structural basis and dynamics of the fiber-to-crystal transition of sickle cell hemoglobin. , 1984, Journal of molecular biology.

[150]  M R Waterman,et al.  Evaluation of the water environments in deoxygenated sickle cells by longitudinal and transverse water proton relaxation rates. , 1975, Archives of biochemistry and biophysics.

[151]  G. Fermi,et al.  Three-dimensional fourier synthesis of human deoxyhaemoglobin at 2-5 A resolution: refinement of the atomic model. , 1975, Journal of molecular biology.

[152]  R. Nagel,et al.  Polymerisation of haemoglobin SA hybrid tetramers , 1977, Nature.

[153]  C. Stetson THE STATE OF HEMOGLOBIN IN SICKLED ERYTHROCYTES , 1966, Journal of Experimental Medicine.

[154]  J. Hofrichter,et al.  Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. , 1985, Journal of molecular biology.

[155]  P. Bromberg,et al.  The sickle-unsickle cycle: a cause of cell fragmentation leading to permanently deformed cells. , 1973, Blood.

[156]  R. Hochstrasser,et al.  Spectroscopic studies of oxy- and carbonmonoxyhemoglobin after pulsed optical excitation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[157]  R. Nagel,et al.  Pressure effects on the flow behavior of sickle (HbSS) red cells in isolated (ex-vivo) microvascular system. , 1983, Microvascular research.

[158]  A. Minton Relations between oxygen saturation and aggregation of sickle-cell hemoglobin. , 1976, Journal of molecular biology.

[159]  M. L. McConnell,et al.  Formation of nuclei during delay time prior to aggregation of deoxyhemoglobin S in concentrated phosphate buffer. , 1979, Biochimica et biophysica acta.

[160]  H J Meiselman,et al.  Influence of oxygen tension on the viscoelastic behavior of red blood cells in sickle cell disease. , 1986, Blood.

[161]  S. Edelstein,et al.  Diameter of haemoglobin S fibres in sickled cells , 1978, Nature.

[162]  L. W. Diggs Sickle Cell Crises: Ward Burdick Award Contribution , 1965 .

[163]  R. Wells,et al.  Fluid Drop-Like Transition of Erythrocytes under Shear , 1969, Science.

[164]  L. Pauling,et al.  Sickle cell anemia a molecular disease. , 1949, Science.

[165]  R. Edalji,et al.  Solubilization of hemoglobin S by other hemoglobins. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[166]  A. Schechter,et al.  13C NMR quantitation of polymer in deoxyhemoglobin S gels. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[167]  A. Szabó,et al.  Ligand binding to macromolecules: Allosteric and sequential models of cooperativity , 1979 .

[168]  J. Steinhardt,et al.  Formation of needle-like aggregates in stirred solutions of hemoglobin S1. , 1976, Biochemical and biophysical research communications.

[169]  J. Bertles,et al.  Deoxygenated sickle hemoglobin. Effects of lyotropic salts on its solubility. , 1979, The Journal of biological chemistry.

[170]  A. Schechter,et al.  Irreversibly sickled erythrocytes in sickle cell anemia: A quantitative reappraisal , 1985, American journal of hematology.

[171]  J. Hofrichter,et al.  Oxygen binding by sickle cell hemoglobin polymers. , 1982, Journal of molecular biology.

[172]  J. D. Bernal,et al.  X-RAY AND CRYSTALLOGRAPHIC STUDIES OF PLANT VIRUS PREPARATIONS : I. INTRODUCTION AND PREPARATION OF SPECIMENS II. MODES OF AGGREGATION OF THE VIRUS PARTICLES. , 1941 .

[173]  J. Harris,et al.  Studies on the Destruction of Red Blood Cells. VIII. Molecular Orientation in Sickle Cell Hemoglobin Solutions.∗ , 1950, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[174]  R. Nagel,et al.  Ligand kinetics of hemoglobin S containing erythrocytes. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[175]  J. Hofrichter,et al.  Quasi-elastic laser light scattering from solutions and gels of hemoglobin S. , 1986, Biophysical journal.

[176]  J. Hofrichter,et al.  Delay time of hemoglobin S polymerization prevents most cells from sickling in vivo. , 1987, Science.

[177]  J. Hofrichter Ligand binding and the gelation of sickle cell hemoglobin. , 1979, Journal of molecular biology.

[178]  K. Moffat,et al.  The rates of polymerization and depolymerization of sickle cell hemoglobin. , 1974, Biochemical and biophysical research communications.

[179]  A. Schechter,et al.  Intracellular polymerization of sickle hemoglobin. Effects of cell heterogeneity. , 1983, The Journal of clinical investigation.

[180]  I. Tinoco,et al.  The effect of speed of deoxygenation on the percentage of aligned hemoglobin in sickle cells. Application of differential polarization microscopy. , 1988, The Journal of biological chemistry.

[181]  S. Edelstein A Plausible Molecular Model for the 14-Filament Fibers of Sickle Cell Hemoglobin , 1981 .

[182]  G. Brittenham Genetic model for observed distributions of proportions of haemoglobin in sickle-cell trait , 1977, Nature.

[183]  K. Adachi,et al.  Nucleation-controlled aggregation of deoxyhemoglobin S. Possible difference in the size of nuclei in different phosphate concentrations. , 1979, The Journal of biological chemistry.

[184]  M. Waterman,et al.  Alteration of the trate of deoxyhemoglobin S polymerization. Effect of pH and percentage of oxygenation. , 1977, The Journal of biological chemistry.

[185]  J. Herzfeld,et al.  Length distributions and the alignment transition of polymers formed by linear reversible polymerization , 1981 .

[186]  M. Goldberg,et al.  The effect of erythrocyte membrane preparations on the polymerization of sickle hemoglobin. , 1981, The Journal of biological chemistry.

[187]  H J Meiselman,et al.  Mechanical properties of oxygenated red blood cells in sickle cell (HbSS) disease. , 1984, Blood.

[188]  C. Bustamante,et al.  Differential polarization imaging. III. Theory confirmation. Patterns of polymerization of hemoglobin S in red blood sickle cells. , 1987, Biophysical journal.

[189]  D. Tosteson,et al.  Regulation of cation content and cell volume in hemoglobin erythrocytes from patients with homozygous hemoglobin C disease. , 1985, The Journal of clinical investigation.

[190]  R. Nagel,et al.  The effect of β73Asn on the interactions of sickling hemoglobins , 1970 .

[191]  P. Klug,et al.  Rheological aspects of sickle cell disease. , 1974, Archives of internal medicine.

[192]  D. Labie,et al.  β-Chain contact sites in the haemoglobin S polymer , 1980, Nature.

[193]  M. Petch,et al.  The in vivo sickle phenomenon: a reappraisal. , 1973, The Journal of laboratory and clinical medicine.

[194]  L. Anderson Structures of deoxy and carbonmonoxy haemoglobin Kansas in the deoxy quaternary conformation. , 1975, Journal of molecular biology.

[195]  P. Y. Chou β-Sheet aggregation proposed in sickle cell hemoglobin , 1974 .

[196]  R. Briehl Rheological Properties of the Gelled Phase of Hemoglobin S , 1981 .

[197]  S. Edelstein,et al.  Sickle cell hemoglobin fiber structure altered by alpha-chain mutation. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[198]  L. Lessin,et al.  Deformability characteristics of sickle cells by microelastimetry , 1978, American journal of hematology.

[199]  N. Mohandas,et al.  Influence of Red Cell Water Content on the Morphology of Sickling , 1980 .

[200]  J. Bertles,et al.  Irreversibly sickled erythrocytes: a consequence of the heterogeneous distribution of hemoglobin types in sickle-cell anemia. , 1968, The Journal of clinical investigation.

[201]  S. Edelstein,et al.  Cooperative interactions of hemoglobin. , 1975, Annual review of biochemistry.

[202]  S. Edelstein,et al.  Polarity of the 14-strand fibers of sickle cell hemoglobin determined by cross-correlation methods. , 1984, Ultramicroscopy.

[203]  G. K. Ackers,et al.  Thermodynamic studies on subunit assembly in human hemoglobin. Temperature dependence of the dimer-tetramer association constants for oxygenated and unliganded hemoglobins. , 1977, The Journal of biological chemistry.

[204]  K. Adachi,et al.  Multiple nature of polymers of deoxyhemoglobin S prepared by different methods. , 1983, The Journal of biological chemistry.

[205]  Allison Ac Observations on the sickling phenomenon and on the distribution of different haemoglobin types in erythrocyte populations. , 1956 .

[206]  M. Waterman,et al.  Kinetics of polymerization of deoxyhemoglobin S and mixtures of hemoglobin A and hemoglobin S at high hemoglobin concentrations. , 1977, Archives of biochemistry and biophysics.

[207]  Nagel Rl,et al.  Interactions between human hemoglobins: sickling and related phenomena. , 1974 .

[208]  N. Mohandas,et al.  A simple laboratory alternative to irreversibly sickled cell (ISC) counts , 1982 .

[209]  R. Briehl Gelation of sickle cell hemoglobin. IV. Phase transitions in hemoglobin S gels: separate measures of aggregation and solution--gel equilibrium. , 1978, Journal of molecular biology.

[210]  M. Perutz,et al.  The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. , 1984, Journal of molecular biology.

[211]  A. Szabó Fluctuations in the polymerization of sickle hemoglobin. A simple analytic model. , 1988, Journal of molecular biology.

[212]  T. Huisman,et al.  On the levels of hemoglobins F and A2 in sickle-cell anemia and some related disorders. , 1974, American journal of clinical pathology.

[213]  R. Josephs,et al.  Polymorphism of sickle cell hemoglobin fibers. , 1976, Journal of molecular biology.

[214]  M. Perutz,et al.  State of Hæmoglobin in Sickle-Cell Anæmia , 1950, Nature.

[215]  R. Nagel,et al.  Dense cells in sickle cell anemia: the effects of gene interaction. , 1984, Blood.

[216]  S. Edelstein,et al.  Sickle cell hemoglobin fiber formation strongly inhibited by the stanleyville II mutation (α78 Asn → Lys) , 1983 .

[217]  Zygmunt Derewenda,et al.  Structure of the liganded T state of haemoglobin identifies the origin of cooperative oxygen binding , 1988, Nature.

[218]  N. Mrabet,et al.  Electrostatic attraction governs the dimer assembly of human hemoglobin. , 1986, The Journal of biological chemistry.

[219]  T. Li,et al.  Optical rotatory dispersion of human hemoglobins A, F, S, C, and M. , 1969, Biochemistry.

[220]  M. Brunori,et al.  Carbon monoxide binding by hemoglobin and myoglobin under photodissociating conditions. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[221]  A. Schechter,et al.  Effects of amino acids on gelation kinetics and solubility of sickle hemoglobin. , 1977, Biochemical and biophysical research communications.

[222]  H. Meiselman,et al.  The effect of fetal hemoglobin on the sickling dynamics of SS erythrocytes. , 1983, Blood cells.

[223]  J. Döbler,et al.  THE PHYSICAL STATE OF HEMOGLOBIN IN SICKLE-CELL ANEMIA ERYTHROCYTES IN VIVO , 1968, The Journal of experimental medicine.

[224]  M. Perutz,et al.  Structure of sickled erythrocytes and of sickle-cell hemoglobin fibers. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[225]  H. Bunn,et al.  Subunit assembly of hemoglobin: an important determinant of hematologic phenotype. , 1987, Blood.

[226]  F. Ferrone,et al.  Kinetics of nucleation-controlled polymerization. A perturbation treatment for use with a secondary pathway. , 1984, Biophysical journal.

[227]  W. Castle From man to molecule and back to mankind. , 1976, Seminars in hematology.

[228]  J. Hofrichter,et al.  Kinetic studies on photolysis-induced gelation of sickle cell hemoglobin suggest a new mechanism. , 1980, Biophysical journal.

[229]  R. Bookchin,et al.  Ionic strength dependence of the polymer solubilities of deoxyhemoglobin S + C and S + A mixtures. , 1986, Blood.

[230]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[231]  R. C. Benedict,et al.  Thermodynamics of anti-sickling agents with hemoglobin S. , 1981, Journal of molecular biology.

[232]  K. Adachi,et al.  Gelation of deoxyhemoglobin A in concentrated phosphate buffer. Exhibition of delay time prior to aggregation and crystallization of deoxyhemoglobin A. , 1979, The Journal of biological chemistry.

[233]  I. Tinoco,et al.  Visualization of oriented hemoglobin S in individual erythrocytes by differential extinction of polarized light. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[234]  P. Kahn,et al.  The absence of volume change in the gelation of hemoglobin-S. , 1982, The Journal of biological chemistry.

[235]  R. Hochstrasser,et al.  Electronic spectrum of single crystals of ferricytochrome-c. , 1967, The Journal of chemical physics.

[236]  M W Makinen,et al.  Electron microscope study of the kinetics of the fiber-to-crystal transition of sickle cell hemoglobin. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[237]  J. Hofrichter,et al.  Gelation of sickle cell hemoglobin in mixtures with normal adult and fetal hemoglobins. , 1979, Journal of molecular biology.

[238]  Massimo Coletta,et al.  Kinetics of sickle haemoglobin polymerization in single red cells , 1982, Nature.

[239]  J. Hofrichter,et al.  Polarized absorption and linear dichroism spectroscopy of hemoglobin. , 1981, Methods in enzymology.

[240]  R. C. Benedict,et al.  Ligand-linked phase equilibria of sickle cell hemoglobin. , 1980, Journal of molecular biology.

[241]  Fabry Me,et al.  Heterogeneity of red cells in the sickler: a characteristic with practical clinical and pathophysiological implications. , 1982 .

[242]  J. Steinhardt,et al.  Crystallization of sickle hemoglobin from gently agitated solutions--an alternative to gelation. , 1977, Journal of molecular biology.

[243]  R. Briehl Solid-like behaviour of unsheared sickle haemoglobin gels and the effects of shear , 1980, Nature.

[244]  G. Hammes,et al.  A kinetic study of protein-protein interactions. , 1976, Biochemistry.

[245]  T. Asakura,et al.  Abnormal precipitation of oxyhemoglobin S by mechanical shaking. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[246]  M. Karplus,et al.  Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[247]  G. K. Ackers,et al.  Kinetics of deoxyhemoglobin subunit dissociation determined by haptoglobin binding: estimation of the equilibrium constant from forward and reverse rates. , 1976, Biochemistry.

[248]  J. Hahn,et al.  Ultrastructure of Sickling and Unsickling in Time‐Lapse Studies , 1976, British journal of haematology.

[249]  A. Minton,et al.  Analysis of non-ideal behavior in concentrated hemoglobin solutions. , 1977, Journal of molecular biology.

[250]  R. Nagel,et al.  Conformational requirements for the polymerization of hemoglobin S: studies of mixed liganded hybrids. , 1973, Journal of molecular biology.

[251]  J. Steinhardt,et al.  A temperature-dependent latent-period in the aggregation of sickle-cell deoxyhemoglobin. , 1974, Biochemical and biophysical research communications.

[252]  P. Ross,et al.  Thermodynamics of protein association reactions: forces contributing to stability. , 1981, Biochemistry.

[253]  R. C. Benedict,et al.  Oxygen binding to sickle cell hemoglobin. , 1979, Journal of molecular biology.

[254]  K. Adachi,et al.  Demonstration of a delay time during aggregation of diluted solutions of deoxyhemoglobin S and hemoglobin CHarlem in concentrated phosphate buffer. , 1978, The Journal of biological chemistry.

[255]  D. Labie,et al.  Structural bases of the inhibitory effects of hemoglobin F and hemoglobin A2 on the polymerization of hemoglobin S. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[256]  J. Hofrichter,et al.  Requirements for therapeutic inhibition of sickle haemoglobin gelation , 1978, Nature.

[257]  J. Herzfeld,et al.  Phase behavior of reversibly polymerizing systems with narrow length distributions , 1981 .

[258]  J. Bertles,et al.  Erythrocyte Hb-S concentration. An important factor in the low oxygen affinity of blood in sickle cell anemia. , 1973, The Journal of clinical investigation.

[259]  J. Hofrichter,et al.  Thermodynamics of gelation of sickle cell deoxyhemoglobin. , 1977, Journal of molecular biology.

[260]  E. Evans,et al.  Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation , 1975 .

[261]  M. Jones,et al.  Thermodynamic study of the crystallization of sickle-cell deoxyhemoglobin (hemoglobin S solubility/saturation concentration/enthalpy of crystallization/entropy of crystallization). , 1979, Journal of molecular biology.

[262]  H. Mizukami,et al.  Hysteresis-Like Behavior of Oxygen Association-Dissociation Equilibrium Curves of Sickle Cells Determined by a New Method , 1977, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[263]  Structure of hemoglobin S fibers: optical determination of the molecular orientation in sickled erythrocytes. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[264]  E. Padlan,et al.  Refined crystal structure of deoxyhemoglobin S. I. Restrained least-squares refinement at 3.0-A resolution. , 1982, The Journal of biological chemistry.

[265]  M. Perrella,et al.  The functional properties of sickle cell blood , 1975, FEBS letters.

[266]  S. Chien Rheology of Sickle Cells and Erythrocyte Content , 1978 .

[267]  R G Shulman,et al.  Allosteric interpretation of haemoglobin properties , 1975, Quarterly Reviews of Biophysics.

[268]  J. Wyman,et al.  LINKED FUNCTIONS AND RECIPROCAL EFFECTS IN HEMOGLOBIN: A SECOND LOOK. , 1964, Advances in protein chemistry.

[269]  M Karplus,et al.  A mathematical model for structure-function relations in hemoglobin. , 1972, Journal of molecular biology.

[270]  A. Schechter,et al.  Molecular and cellular pathogenesis of hemoglobin SC disease. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[271]  E. Henry,et al.  Current Perspectives on the Kinetics of Hemoglobin S Gelation , 1989, Annals of the New York Academy of Sciences.

[272]  M. A. Lauffer Sickle Cell Anemia Hemoglobin , 1975 .

[273]  M. Perutz,et al.  Structure of human foetal deoxyhaemoglobin. , 1977, Journal of molecular biology.

[274]  Robley C. Williams,et al.  Quantitative aspects of formation of the hybrid tetramer [α2βAβS] in mixtures of hemoglobins A and S , 1975 .

[275]  S. Edelstein,et al.  Three-dimensional reconstruction of the 14-filament fibers of hemoglobin S. , 1979, Journal of molecular biology.

[276]  M. Brunori,et al.  Single cell microspectroscopy reveals that erythrocytes containing hemoglobin S retain a ‘memory’ of previous sickling cycles , 1988, FEBS letters.

[277]  J. Hofrichter,et al.  Linear dichroism of biological chromophores. , 1976, Annual review of biophysics and bioengineering.