A non-ideal magnetohydrodynamic GADGET: simulating massive galaxy clusters

Magnetic fields in the intra-cluster medium (ICM) of galaxy clusters have been studied in the past through different methods. So far, our understanding of the origin of these magnetic fields, as well as their role in the process of structure formation and their interplay with the other constituents of the ICM, is still limited. In the coming years, the up-coming generation of radio telescopes is going to provide new data that will have the potential of setting constraints on the properties of magnetic fields in galaxy clusters. Here, we present zoomed-in simulations for a set of massive galaxy clusters (Mv ≥ 1015 h−1 M⊙). This is an ideal sample to study the evolution of the magnetic field during the process of structure formation in detail. Turbulent motions of the gas within the ICM will manifest themselves in a macroscopic magnetic resistivity ηm, which has to be taken explicitly into account, especially at scales below the resolution limit. We have adapted the magnetohydrodynamic (MHD) gadget code by Dolag & Stasyszyn to include the treatment of the magnetic resistivity, and for the first time we have included non-ideal MHD equations to better follow the evolution of the magnetic field within the galaxy clusters. We investigate which value of the magnetic resistivity ηm is required to match the magnetic field profile derived from radio observations. We find that a value of ηm∼ 6 × 1027 cm2 s−1 is necessary to recover the shape of the magnetic field profile inferred from radio observations of the Coma cluster. This value agrees well with the expected level of turbulent motions within the ICM at our resolution limit. The magnetic field profiles of the simulated clusters can be fitted by a β-model-like profile, with small dispersion of the parameters. We also find that the temperature, density and entropy profiles of the clusters depend on the magnetic resistivity constant, having flatter profiles in the inner regions when the magnetic resistivity increases.

[1]  Marcus Brüggen,et al.  Massive and refined - II. The statistical properties of turbulent motions in massive galaxy clusters with high spatial resolution , 2011 .

[2]  S. Borgani,et al.  X-ray mass proxies from hydrodynamic simulations of galaxy clusters – I , 2011, 1102.2903.

[3]  M. Markevitch,et al.  ON THE CONNECTION BETWEEN GIANT RADIO HALOS AND CLUSTER MERGERS , 2010, 1008.3624.

[4]  A. Lazarian,et al.  Acceleration of primary and secondary particles in galaxy clusters by compressible MHD turbulence: from radio haloes to gamma-rays , 2010, 1008.0184.

[5]  S. Schindler,et al.  Rotation measures of radio sources in hot galaxy clusters , 2010, 1007.5207.

[6]  Michael L. Norman,et al.  COSMOLOGICAL ADAPTIVE MESH REFINEMENT MAGNETOHYDRODYNAMICS WITH ENZO , 2010 .

[7]  W. Schmidt,et al.  ADAPTIVELY REFINED LARGE EDDY SIMULATIONS OF A GALAXY CLUSTER: TURBULENCE MODELING AND THE PHYSICS OF THE INTRACLUSTER MEDIUM , 2009 .

[8]  K. Dolag,et al.  SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES , 2009, 0911.3327.

[9]  A. Jenkins,et al.  Second-order Lagrangian perturbation theory initial conditions for resimulations , 2009, 0910.0258.

[10]  W. Schmidt,et al.  Adaptively refined large eddy simulations of clusters , 2009, 0909.1800.

[11]  H. Siejkowski,et al.  Cosmic-ray driven dynamo in the interstellar medium of irregular galaxies , 2009, 0909.0926.

[12]  F. Ferrari,et al.  Radio halos in nearby (z < 0.4) clusters of galaxies , 2009, 0909.0911.

[13]  K. Dolag,et al.  The Coma cluster magnetic field from Faraday rotation measures , 2009, 1002.0594.

[14]  M. Norman,et al.  Turbulent Motions and Shocks Waves in Galaxy Clusters simulated with AMR , 2009, 0905.3169.

[15]  K. Dolag,et al.  Magnetic field structure due to the global velocity field in spiral galaxies , 2009, 0905.0351.

[16]  Hui Li,et al.  Cosmological AMR MHD with Enzo , 2009, 0902.2594.

[17]  Nrao,et al.  Structures of the magnetoionic media around the Fanaroff–Riley Class I radio galaxies 3C 31 and Hydra A , 2008, 0809.2411.

[18]  K. Dolag,et al.  Cluster magnetic fields from galactic outflows , 2008, 0808.0919.

[19]  K. Dolag,et al.  An MHD gadget for cosmological simulations , 2008, 0807.3553.

[20]  S. Bardelli,et al.  GMRT radio halo survey in galaxy clusters at z = 0.2–0.4 - II. The eBCS clusters and analysis of the complete sample , 2008, 0803.4084.

[21]  R. Teyssier,et al.  Cosmological MHD simulation of a cooling flow cluster , 2008, 0802.0490.

[22]  J. Niemeyer,et al.  Hydrodynamical adaptive mesh refinement simulations of turbulent flows -II. Cosmological simulations of galaxy clusters , 2008, 0801.4729.

[23]  C. Ferrari,et al.  Observations of Extended Radio Emission in Clusters , 2008, 0801.0985.

[24]  K. Dolag,et al.  Non-Thermal Processes in Cosmological Simulations , 2008, 0801.1048.

[25]  L. Guzzo,et al.  The representative XMM-Newton cluster structure survey (REXCESS) of an X-ray luminosity selected galaxy cluster sample , 2007, astro-ph/0703553.

[26]  A. Strong,et al.  Cosmic-Ray Propagation and Interactions in the Galaxy , 2007, astro-ph/0701517.

[27]  Daniel J. Price,et al.  An energy‐conserving formalism for adaptive gravitational force softening in smoothed particle hydrodynamics and N‐body codes , 2006, astro-ph/0610872.

[28]  W. Forman,et al.  Effect of turbulent diffusion on iron abundance profiles , 2006, astro-ph/0608491.

[29]  V. Vacca,et al.  The intracluster magnetic field power spectrum in Abell 2255 , 2006, astro-ph/0608433.

[30]  K. Dolag,et al.  Turbulent velocity fields in smoothed particle hydrodymanics simulated galaxy clusters: scaling laws for the turbulent energy , 2006 .

[31]  Daniel J. Price,et al.  Smoothed particle magnetohydrodynamics - III. Multidimensional tests and the B = 0 constraint , 2005, astro-ph/0509083.

[32]  C. D. Vecchia,et al.  Simulations of Magnetic Fields in Filaments , 2005 .

[33]  K. Dolag,et al.  Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity , 2005, astro-ph/0507480.

[34]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[35]  A. Wilmot-Smith,et al.  Magnetic diffusion and the motion of field lines , 2005 .

[36]  B. Chandran,et al.  Turbulent Heating of Galaxy-Cluster Plasmas , 2005 .

[37]  T. Ensslin,et al.  A Bayesian view on Faraday rotation maps - Seeing the magnetic power spectra in galaxy clusters , 2005, astro-ph/0501211.

[38]  T. Clarke Faraday rotation observations of magnetic fields in galaxy clusters , 2004, astro-ph/0412268.

[39]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[40]  K. Dolag,et al.  Magnetic fields and Faraday rotation in clusters of galaxies , 2004, astro-ph/0406225.

[41]  Daniel J. Price,et al.  Smoothed Particle Magnetohydrodynamics – I. Algorithm and tests in one dimension , 2003, astro-ph/0310789.

[42]  Daniel J. Price,et al.  Smoothed Particle Magnetohydrodynamics – II. Variational principles and variable smoothing-length terms , 2003, astro-ph/0310790.

[43]  H. Lesch,et al.  Strong magnetic fields and cosmic rays in very young galaxies , 2003, astro-ph/0302162.

[44]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[45]  K. Dolag,et al.  Evolution and structure of magnetic fields in simulated galaxy clusters , 2002, astro-ph/0202272.

[46]  J. Trulsen,et al.  Regularized Smoothed Particle Hydrodynamics: A New Approach to Simulating Magnetohydrodynamic Shocks , 2001 .

[47]  V. Springel,et al.  Cosmological SPH simulations: The entropy equation , 2001, astro-ph/0111016.

[48]  S. Schindler,et al.  Correlation of the magnetic field and the intra-cluster gas density in galaxy clusters , 2001, astro-ph/0108485.

[49]  D. Buote On the Origin of Radio Halos in Galaxy Clusters , 2001, astro-ph/0104211.

[50]  T. Ensslin,et al.  A comparison of radio and X-ray morphologies of four clusters of galaxies containing radio halos , 2001, astro-ph/0101418.

[51]  Los Alamos National Laboratory,et al.  XMM- Newton Observation of the Coma Galaxy Cluster : The temperature structure in the central region , 2000, astro-ph/0011086.

[52]  F. Bouchet,et al.  The structure and dynamical evolution of dark matter haloes , 1996, astro-ph/9603132.

[53]  S. Cole,et al.  Using the evolution of clusters to constrain Omega , 1996, astro-ph/9601088.

[54]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[55]  H. Gove,et al.  Annual Review Of Nuclear And Particle Science , 1984 .

[56]  A. Bonafede,et al.  Fractional polarization as a probe of magnetic fields in the intra-cluster medium , 2011 .

[57]  A. Finoguenov,et al.  Probing turbulence in the Coma galaxy cluster , 2004, astro-ph/0404132.

[58]  E. Burbidge,et al.  THE EVOLUTION OF GALAXIES , 1978 .

[59]  L. Spitzer Physics of fully ionized gases , 1956 .