Solution-state NMR Analysis of Lignocellulosics in Nonderivatizing Solvents

[1]  Alistair W. T. King,et al.  Liquid-State NMR Analysis of Nanocelluloses. , 2018, Biomacromolecules.

[2]  T. Welton,et al.  Enhancing the stability of ionic liquid media for cellulose processing: acetal protection or carbene suppression? , 2016 .

[3]  Alistair W. T. King,et al.  Application of mild autohydrolysis to facilitate the dissolution of wood chips in direct-dissolution solvents , 2016 .

[4]  A. Ragauskas,et al.  Elucidating Structural Characteristics of Biomass using Solution-State 2 D NMR with a Mixture of Deuterated Dimethylsulfoxide and Hexamethylphosphoramide. , 2016, ChemSusChem.

[5]  E. Cranston,et al.  Poly(methyl methacrylate)‐grafted cellulose nanocrystals: One‐step synthesis, nanocomposite preparation, and characterization , 2016 .

[6]  Alistair W. T. King,et al.  Solution-State One- and Two-Dimensional NMR Spectroscopy of High-Molecular-Weight Cellulose. , 2016, ChemSusChem.

[7]  A. Ragauskas,et al.  A review of whole cell wall NMR by the direct-dissolution of biomass , 2016 .

[8]  C. Wyman,et al.  Comparison of Different Biomass Pretreatment Techniques and Their Impact on Chemistry and Structure , 2015, Frontiers in Energy Research.

[9]  N. Nakamura,et al.  1H NMR Evaluation of Polar and Nondeuterated Ionic Liquids for Selective Extraction of Cellulose and Xylan from Wheat Bran , 2014 .

[10]  H. Ohno,et al.  1H NMR analysis of cellulose dissolved in non-deuterated ionic liquids , 2014, Cellulose.

[11]  Alistair W. T. King,et al.  Amphiphilic and phase-separable ionic liquids for biomass processing. , 2014, ChemSusChem.

[12]  Brooks D. Rabideau,et al.  The role of the cation in the solvation of cellulose by imidazolium-based ionic liquids. , 2014, The journal of physical chemistry. B.

[13]  J. Ralph,et al.  A gel-state 2D-NMR method for plant cell wall profiling and analysis: a model study with the amorphous cellulose and xylan from ball-milled cotton linters , 2014 .

[14]  Alistair W. T. King,et al.  On the solubility of wood in non-derivatising ionic liquids , 2013 .

[15]  D. Wemmer,et al.  Solution-state 2D NMR spectroscopy of plant cell walls enabled by a dimethylsulfoxide-d6/1-ethyl-3-methylimidazolium acetate solvent. , 2013, Analytical chemistry.

[16]  S. Mansfield,et al.  Whole plant cell wall characterization using solution-state 2D NMR , 2012, Nature Protocols.

[17]  G Gentile,et al.  A multitechnique approach to assess the effect of ball milling on cellulose. , 2012, Carbohydrate polymers.

[18]  C. Wyman,et al.  HSQC (heteronuclear single quantum coherence) 13C–1H correlation spectra of whole biomass in perdeuterated pyridinium chloride–DMSO system: An effective tool for evaluating pretreatment , 2011 .

[19]  T. Heinze,et al.  Tailored Media for Homogeneous Cellulose Chemistry: Ionic Liquid/Co‐Solvent Mixtures , 2011 .

[20]  R. Rogers,et al.  Reaction of elemental chalcogens with imidazolium acetates to yield imidazole-2-chalcogenones: direct evidence for ionic liquids as proto-carbenes. , 2011, Chemical communications.

[21]  Roberto Rinaldi,et al.  Instantaneous dissolution of cellulose in organic electrolyte solutions. , 2011, Chemical communications.

[22]  A. Ragauskas,et al.  Rapid determination of lignin content via direct dissolution and ¹H NMR analysis of plant cell walls. , 2010, ChemSusChem.

[23]  A. Ragauskas,et al.  Changes in the Structure of the Cellulose Fiber Wall during Dilute Acid Pretreatment in Populus Studied by 1H and 2H NMR , 2010 .

[24]  J. Ralph,et al.  Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d(6)/pyridine-d(5). , 2010, Organic & biomolecular chemistry.

[25]  A. Ragauskas,et al.  Perdeuterated pyridinium molten salt (ionic liquid) for direct dissolution and NMR analysis of plant cell walls , 2009 .

[26]  Anna Olszewska,et al.  In situ determination of lignin phenolics and wood solubility in imidazolium chlorides using (31)P NMR. , 2009, Journal of agricultural and food chemistry.

[27]  Alistair W. T. King,et al.  Hydrophobic interactions determining functionalized lignocellulose solubility in dialkylimidazolium chlorides, as probed by 31P NMR. , 2009, Biomacromolecules.

[28]  Antje Potthast,et al.  Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids , 2008 .

[29]  J. Ralph,et al.  Characterization of nonderivatized plant cell walls using high‐resolution solution‐state NMR spectroscopy , 2008, Magnetic resonance in chemistry : MRC.

[30]  J. Ralph,et al.  Solution-state 2D NMR of Ball-milled Plant Cell Wall Gels in DMSO-d6 , 2008, BioEnergy Research.

[31]  Hiroyuki Ohno,et al.  Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions , 2008 .

[32]  T. Heinze,et al.  Interactions of Ionic Liquids with Polysaccharides 1. Unexpected Acetylation of Cellulose with 1‐Ethyl‐3‐methylimidazolium Acetate , 2007 .

[33]  D. Argyropoulos,et al.  Toward a better understanding of the lignin isolation process from wood. , 2006, Journal of agricultural and food chemistry.

[34]  Helena Pereira,et al.  Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose , 2004 .

[35]  J. Ralph,et al.  Non-degradative dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR. , 2003, The Plant journal : for cell and molecular biology.

[36]  A. Isogai NMR analysis of cellulose dissolved in aqueous NaOH solutions , 1997 .

[37]  D. Argyropoulos Quantitative phosphorus-31 NMR analysis of lignins, a new tool for the lignin chemist , 1994 .

[38]  T. Welton,et al.  Ionic liquids: not always innocent solvents for cellulose , 2015 .