Quantum partition functions from classical distributions: Application to rare-gas clusters

We investigate the thermodynamic behavior of quantum many-body systems using several methods based on classical calculations. These approaches are compared for the melting of Lennard-Jones (LJ) clusters, where path-integral Monte Carlo (PIMC) results are also available. First, we examine two quasiclassical approaches where the classical potential is replaced by effective potentials accounting for quantum corrections of low order in ℏ. Of the Wigner–Kirkwood and Feynman–Hibbs effective potentials, only the latter is found to be in quantitative agreement with quantum simulations. However, both potentials fail to describe even qualitatively the low-temperature regime, where quantum effects are strong. Our second approach is based on the harmonic superposition approximation, but with explicit quantum oscillators. In its basic form, this approach is in good qualitative agreement with PIMC results, and becomes more accurate at low temperatures. By including anharmonic corrections in the form of temperature-depe...

[1]  David J. Wales,et al.  Coexistence in small inert gas clusters , 1993 .

[2]  D. L. Freeman,et al.  Phase changes in 38-atom Lennard-Jones clusters. I. A parallel tempering study in the canonical ensemble , 2000, physics/0003068.

[3]  J. D. Doll,et al.  Fourier path-integral Monte Carlo methods: Partial averaging. , 1985, Physical review letters.

[4]  J. Jortner,et al.  Energetic and thermodynamic size effects in molecular clusters , 1989 .

[5]  J. D. Doll,et al.  A heat capacity estimator for Fourier path integral simulations , 2000 .

[6]  The dynamics of structural transitions in sodium chloride clusters , 1999, cond-mat/9905407.

[7]  D. Wales,et al.  Structure, dynamics, and thermodynamics of model (H2O)8 and (H2O)20 clusters , 1993 .

[8]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[9]  A. Mackay A dense non-crystallographic packing of equal spheres , 1962 .

[10]  J. Jortner Cluster size effects , 1992 .

[11]  J. D. Doll,et al.  Extending J walking to quantum systems: Applications to atomic clusters , 1992 .

[12]  S. Elliott,et al.  The Physics and Chemistry of Solids , 1956, Nature.

[13]  G. Voth,et al.  A theory for time correlation functions in liquids , 1995 .

[14]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[15]  J. Doye,et al.  Evolution of the Potential Energy Surface with Size for Lennard-Jones Clusters , 1999, cond-mat/9903305.

[16]  J. Doye,et al.  Thermodynamics and the Global Optimization of Lennard-Jones clusters , 1998, cond-mat/9806020.

[17]  M. C. Gordillo,et al.  A comparison of the efficiency of Fourier- and discrete time-path integral Monte Carlo , 1998 .

[18]  Thomas A. Weber,et al.  Hidden structure in liquids , 1982 .

[19]  J. Straub,et al.  Approximate solution of the classical Liouville equation using Gaussian phase packet dynamics: Application to enhanced equilibrium averaging and global optimization , 1993 .

[20]  C. Chakravarty Melting of neon clusters: Path integral Monte Carlo simulations , 1995 .

[21]  Charusita Chakravarty,et al.  Effects of three-body (Axilrod-Teller) forces on the classical and quantum behavior of rare-gas trimers , 1997 .

[22]  C. Chakravarty Quantum delocalization and cluster melting , 1995 .

[23]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[24]  H. Haberland,et al.  Irregular variations in the melting point of size-selected atomic clusters , 1998, Nature.

[25]  C. Chakravarty Path integral simulations of atomic and molecular systems , 1997 .

[26]  R. Ramaswamy,et al.  Instantaneous normal mode spectra of quantum clusters , 1997 .

[27]  Liu,et al.  Variational path-integral theory of thermal properties of solids. , 1991, Physical review. B, Condensed matter.

[28]  F. Stillinger Inherent structure formalism for quantum systems , 1988 .

[29]  Eberhard R. Hilf,et al.  The structure of small clusters: Multiple normal-modes model , 1993 .

[30]  L. Sesé A quantum Monte Carlo study of liquid Lennard-Jones methane, path-integral and effective potentials , 1992 .

[31]  J. Northby Structure and binding of Lennard‐Jones clusters: 13≤N≤147 , 1987 .

[32]  F. Stillinger,et al.  Inherent structures in the potential energy landscape of solid 4He , 1995 .

[33]  Neumann,et al.  Asymptotic expansions and effective potentials for almost classical N-body systems. , 1989, Physical review. A, General physics.

[34]  J. Northby,et al.  Structure of Charged Argon Clusters Formed in a Free Jet Expansion , 1984 .

[35]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[36]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[37]  T. Märk,et al.  Production and stability of neon cluster ions up to Ne+90 , 1987 .

[38]  F. Calvo,et al.  Mechanisms of phase transitions in sodium clusters: From molecular to bulk behavior , 2000 .

[39]  Jonathan P. K. Doye,et al.  Entropic tempering: A method for overcoming quasiergodicity in simulation , 2000 .

[40]  B. N. Brockhouse,et al.  Crystal Dynamics and Electronic Specific Heats of Palladium and Copper , 1971 .

[41]  R. L. Roy,et al.  How do quantum effects change conclusions about heterogeneous cluster behavior based on classical mechanics simulations , 1998 .

[42]  T. A. Osborn,et al.  Wigner-Kirkwood expansions , 1982 .

[43]  J. Doye,et al.  THE DOUBLE-FUNNEL ENERGY LANDSCAPE OF THE 38-ATOM LENNARD-JONES CLUSTER , 1998, cond-mat/9808265.

[44]  F. Calvo,et al.  Configurational density of states from molecular dynamics simulations , 1995 .

[45]  R. W. Hall,et al.  A Path Integral Monte Carlo Study of Liquid Neon and the Quantum Effective Pair Potential , 1984 .

[46]  R. Berry,et al.  Realistic master equation modeling of relaxation on complete potential energy surfaces: Partition function models and equilibrium results , 1998 .

[47]  J. Doye,et al.  Structural relaxation in atomic clusters: master equation dynamics. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  J. Doye,et al.  Tetrahedral global minimum for the 98-atom Lennard-Jones cluster. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[49]  D. Marx,et al.  Diatomic molecules, rotations, and path‐integral Monte Carlo simulations: N2 and H2 on graphite , 1993 .

[50]  J. Kirkwood Quantum Statistics of Almost Classical Assemblies , 1933 .

[51]  R. Berry,et al.  Unequal freezing and melting temperatures for clusters , 1984 .

[52]  Srikanth Sastry,et al.  Evaluation of the configurational entropy of a model liquid from computer simulations , 2000, cond-mat/0005225.

[53]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[54]  J. J. Burton Vibrational Frequencies and Entropies of Small Clusters of Atoms , 1972 .

[55]  R. Whetten,et al.  Statistical thermodynamics of the cluster solid-liquid transition. , 1990, Physical review letters.

[56]  V. Buch,et al.  Path integral simulations of mixed para‐D2 and ortho‐D2 clusters: The orientational effects , 1994 .

[57]  Jonathan P. K. Doye,et al.  Calculation of thermodynamic properties of small Lennard‐Jones clusters incorporating anharmonicity , 1995 .

[58]  J. Doye,et al.  The effect of the range of the potential on the structures of clusters , 1995 .

[59]  M. Klein,et al.  Path‐integral Monte Carlo studies of para‐hydrogen clusters , 1992 .

[60]  C. Chakravarty Cluster analogs of binary isotopic mixtures: Path integral Monte Carlo simulations , 1996 .