Stability of a Cartesian grid projection method for zero Froude number shallow water flows
暂无分享,去创建一个
[1] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[2] R. Temam. Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .
[3] A. Majda,et al. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .
[4] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[5] J. Bell,et al. A Second-Order Projection Method for Variable- Density Flows* , 1992 .
[6] G. D. van Albada,et al. A comparative study of computational methods in cosmic gas dynamics , 1982 .
[7] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[8] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[9] Michael Oevermann,et al. A Cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces , 2006, J. Comput. Phys..
[10] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[11] C. Schulz-Rinne,et al. The Riemann problem for two-dimensional gas dynamics and new limiters for high-order schemes , 1993 .
[12] Stefan Vater,et al. A New Projection Method for the Zero Froude Number Shallow Water Equations , 2005 .
[13] J. Thomas,et al. Mixed finite volume methods , 1999 .
[14] P. Colella,et al. A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .
[15] Endre Süli. Convergence of finite volume schemes for Poisson's equation on nonuniform meshes , 1991 .
[16] Dietrich Braess,et al. Finite Elemente - Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie , 1992 .
[17] A. Chorin. Numerical solution of the Navier-Stokes equations , 1968 .
[18] P. Colella,et al. A second-order projection method for the incompressible navier-stokes equations , 1989 .
[19] John B. Bell,et al. A Numerical Method for the Incompressible Navier-Stokes Equations Based on an Approximate Projection , 1996, SIAM J. Sci. Comput..
[20] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[21] Philip M. Gresho,et al. On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .
[22] R. Nicolaides. Existence, Uniqueness and Approximation for Generalized Saddle Point Problems , 1982 .
[23] John B. Bell,et al. Approximate Projection Methods: Part I. Inviscid Analysis , 2000, SIAM J. Sci. Comput..
[24] Carsten W. Schulz-Rinne,et al. The Riemann Problem for Two-Dimensional Gas Dynamics , 1993 .
[25] S. Schochet. Fast Singular Limits of Hyperbolic PDEs , 1994 .
[26] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[27] Stanley Osher,et al. Convergence of Generalized MUSCL Schemes , 1985 .
[28] S. Schochet. THE MATHEMATICAL THEORY OF LOW MACH NUMBER FLOWS , 2005 .
[29] B. V. Leer,et al. Towards the Ultimate Conservative Difference Scheme , 1997 .
[30] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[31] C. Munz,et al. The extension of incompressible flow solvers to the weakly compressible regime , 2003 .
[32] J. Kan. A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .
[33] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[34] R. Klein. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .
[35] M. Minion. A Projection Method for Locally Refined Grids , 1996 .
[36] Claudio Canuto,et al. Generalized Inf-Sup Conditions for Chebyshev Spectral Approximation of the Stokes Problem , 1988 .
[37] R. Klein,et al. Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 2000 .
[38] I. Babuska. Error-bounds for finite element method , 1971 .
[39] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[40] Jie Shen,et al. An overview of projection methods for incompressible flows , 2006 .
[41] Rupert Klein,et al. Regular Article: Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 1999 .
[42] F. Harlow,et al. Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .