Stability of a Cartesian grid projection method for zero Froude number shallow water flows

In this paper a Godunov-type projection method for computing approximate solutions of the zero Froude number (incompressible) shallow water equations is presented. It is second-order accurate and locally conserves height (mass) and momentum. To enforce the underlying divergence constraint on the velocity field, the predicted numerical fluxes, computed with a standard second order method for hyperbolic conservation laws and applied to an auxiliary system, are corrected in two steps. First, a MAC-type projection adjusts the advective velocity divergence. In a second projection step, additional momentum flux corrections are computed to obtain new time level cell-centered velocities, which satisfy another discrete version of the divergence constraint. The scheme features an exact and stable second projection. It is obtained by a Petrov–Galerkin finite element ansatz with piecewise bilinear trial functions for the unknown height and piecewise constant test functions. The key innovation compared to existing finite volume projection methods is a correction of the in-cell slopes of the momentum by the second projection. The stability of the projection is proved using a generalized theory for mixed finite elements. In order to do so, the validity of three different inf-sup conditions has to be shown. The results of preliminary numerical test cases demonstrate the method’s applicability. On fixed grids the accuracy is improved by a factor four compared to a previous version of the scheme.

[1]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[2]  R. Temam Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .

[3]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[4]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[5]  J. Bell,et al.  A Second-Order Projection Method for Variable- Density Flows* , 1992 .

[6]  G. D. van Albada,et al.  A comparative study of computational methods in cosmic gas dynamics , 1982 .

[7]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[8]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[9]  Michael Oevermann,et al.  A Cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces , 2006, J. Comput. Phys..

[10]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[11]  C. Schulz-Rinne,et al.  The Riemann problem for two-dimensional gas dynamics and new limiters for high-order schemes , 1993 .

[12]  Stefan Vater,et al.  A New Projection Method for the Zero Froude Number Shallow Water Equations , 2005 .

[13]  J. Thomas,et al.  Mixed finite volume methods , 1999 .

[14]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[15]  Endre Süli Convergence of finite volume schemes for Poisson's equation on nonuniform meshes , 1991 .

[16]  Dietrich Braess,et al.  Finite Elemente - Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie , 1992 .

[17]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[18]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[19]  John B. Bell,et al.  A Numerical Method for the Incompressible Navier-Stokes Equations Based on an Approximate Projection , 1996, SIAM J. Sci. Comput..

[20]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[21]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[22]  R. Nicolaides Existence, Uniqueness and Approximation for Generalized Saddle Point Problems , 1982 .

[23]  John B. Bell,et al.  Approximate Projection Methods: Part I. Inviscid Analysis , 2000, SIAM J. Sci. Comput..

[24]  Carsten W. Schulz-Rinne,et al.  The Riemann Problem for Two-Dimensional Gas Dynamics , 1993 .

[25]  S. Schochet Fast Singular Limits of Hyperbolic PDEs , 1994 .

[26]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[27]  Stanley Osher,et al.  Convergence of Generalized MUSCL Schemes , 1985 .

[28]  S. Schochet THE MATHEMATICAL THEORY OF LOW MACH NUMBER FLOWS , 2005 .

[29]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[30]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[31]  C. Munz,et al.  The extension of incompressible flow solvers to the weakly compressible regime , 2003 .

[32]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[33]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[34]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[35]  M. Minion A Projection Method for Locally Refined Grids , 1996 .

[36]  Claudio Canuto,et al.  Generalized Inf-Sup Conditions for Chebyshev Spectral Approximation of the Stokes Problem , 1988 .

[37]  R. Klein,et al.  Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 2000 .

[38]  I. Babuska Error-bounds for finite element method , 1971 .

[39]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[40]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[41]  Rupert Klein,et al.  Regular Article: Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 1999 .

[42]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .