Analysis of Boundary Conditions for Crystal Defect Atomistic Simulations

Numerical simulations of crystal defects are necessarily restricted to finite computational domains, supplying artificial boundary conditions that emulate the effect of embedding the defect in an effectively infinite crystalline environment. This work develops a rigorous framework within which the accuracy of different types of boundary conditions can be precisely assessed. We formulate the equilibration of crystal defects as variational problems in a discrete energy space and establish qualitatively sharp regularity estimates for minimisers. Using this foundation we then present rigorous error estimates for (i) a truncation method (Dirichlet boundary conditions), (ii) periodic boundary conditions, (iii) boundary conditions from linear elasticity, and (iv) boundary conditions from nonlinear elasticity. Numerical results confirm the sharpness of the analysis.

[1]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[2]  A. Shapeev,et al.  Interpolants of lattice functions for the analysis of atomistic/continuum multiscale methods , 2012, 1204.3705.

[3]  Christoph Ortner,et al.  Atomistic-to-continuum coupling , 2013, Acta Numerica.

[4]  Christoph Ortner,et al.  Construction and Sharp Consistency Estimates for Atomistic/Continuum Coupling Methods with General Interfaces: A Two-Dimensional Model Problem , 2012, SIAM J. Numer. Anal..

[5]  Mathieu Lewin,et al.  A New Approach to the Modeling of Local Defects in Crystals: The Reduced Hartree-Fock Case , 2007, math-ph/0702071.

[6]  R. Eppinger,et al.  List of symbols. , 2007, Journal of the ICRU.

[7]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[8]  Charalambos Makridakis,et al.  On Atomistic-to-Continuum Couplings without Ghost Forces in Three Dimensions , 2012, 1211.7158.

[9]  Eric Cances,et al.  Non-perturbative embedding of local defects in crystalline materials , 2007, 0706.0794.

[10]  Alexander V. Shapeev,et al.  (In-)stability and Stabilization of QNL-Type Atomistic-to-Continuum Coupling Methods , 2013, Multiscale Model. Simul..

[11]  Vasily Bulatov,et al.  Computer Simulations of Dislocations (Oxford Series on Materials Modelling) , 2006 .

[12]  Claude Le Bris,et al.  MATHEMATICAL MODELING OF POINT DEFECTS IN MATERIALS SCIENCE , 2013 .

[13]  C. Ortner,et al.  Existence and Stability of a Screw Dislocation under Anti-Plane Deformation , 2013, 1304.2500.

[14]  A. Stoneham Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors , 1976 .

[15]  Alexander V. Shapeev,et al.  Theory-based benchmarking of the blended force-based quasicontinuum method☆ , 2013, 1304.1368.

[16]  Weinan E,et al.  Cauchy–Born Rule and the Stability of Crystalline Solids: Static Problems , 2007 .

[17]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[18]  Christoph Ortner,et al.  THE ROLE OF THE PATCH TEST IN 2D ATOMISTIC-TO-CONTINUUM COUPLING METHODS ∗ , 2011, 1101.5256.

[19]  Alexander V. Shapeev Consistent Energy-Based Atomistic/Continuum Coupling for Two-Body Potentials in Three Dimensions , 2012, SIAM J. Sci. Comput..

[20]  M. P. Ariza,et al.  Discrete Crystal Elasticity and Discrete Dislocations in Crystals , 2005 .

[21]  C. Woodward,et al.  Flexible Ab initio boundary conditions: simulating isolated dislocations in bcc Mo and Ta. , 2002, Physical review letters.

[22]  Alexander V. Shapeev,et al.  Consistent Energy-Based Atomistic/Continuum Coupling for Two-Body Potentials in One and Two Dimensions , 2010, Multiscale Model. Simul..

[23]  C. Ortner,et al.  A note on linear elliptic systems on $\R^d$ , 2012, 1202.3970.

[24]  Pierre-Louis Lions,et al.  The Mathematical Theory of Thermodynamic Limits: Thomas--Fermi Type Models , 1998 .

[25]  J. E. Sinclair Improved Atomistic Model of a bcc Dislocation Core , 1971 .

[26]  Tomotsugu Shimokawa,et al.  Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region , 2004 .

[27]  Consistent Energy-Based Atomistic/Continuum Coupling for Two-Body Potential: 1D and 2D Case , 2010 .

[28]  M. Dobson There is no pointwise consistent quasicontinuum energy , 2011, 1109.1897.

[29]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[30]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[31]  S. Griffis EDITOR , 1997, Journal of Navigation.

[32]  Christoph Ortner,et al.  Construction and sharp consistency estimates for atomistic/continuum coupling methods with general interfaces: a 2D model problem , 2011 .

[33]  Christoph Ortner,et al.  Analysis of Stable Screw Dislocation Configurations in an Antiplane Lattice Model , 2014, SIAM J. Math. Anal..

[34]  Jianfeng Lu,et al.  Stability Of A Force-Based Hybrid Method With Planar Sharp Interface , 2012, SIAM J. Numer. Anal..

[35]  D. Wallace,et al.  Thermodynamics of Crystals , 1972 .

[36]  X. Blanc,et al.  From Molecular Models¶to Continuum Mechanics , 2002 .

[37]  E Weinan,et al.  Uniform Accuracy of the Quasicontinuum Method , 2006, MRS Online Proceedings Library.

[38]  Florian Theil,et al.  Justification of the Cauchy–Born Approximation of Elastodynamics , 2013 .

[39]  Lattice Green function for extended defect calculations: Computation and error estimation with long-range forces , 2006, cond-mat/0607388.

[40]  X. Blanc,et al.  A Possible Homogenization Approach for the Numerical Simulation of Periodic Microstructures with Defects , 2012 .

[41]  Alexander V. Shapeev,et al.  Analysis of an energy-based atomistic/continuum approximation of a vacancy in the 2D triangular lattice , 2013, Math. Comput..

[42]  C. Ortner,et al.  ON THE STABILITY OF BRAVAIS LATTICES AND THEIR CAUCHY-BORN APPROXIMATIONS ∗ , 2012 .

[43]  V. Ehrlacher,et al.  Local Defects are Always Neutral in the Thomas–Fermi–von Weiszäcker Theory of Crystals , 2010, 1007.2603.

[44]  Sidney Yip,et al.  Periodic image effects in dislocation modelling , 2003 .

[45]  Adriana Garroni,et al.  Metastability and Dynamics of Discrete Topological Singularities in Two Dimensions: A Γ-Convergence Approach , 2014 .

[46]  Alexander V. Shapeev,et al.  Analysis of an Energy-based Atomistic/Continuum Coupling Approximation of a Vacancy in the 2D Triangular Lattice , 2011 .

[47]  Xiantao Li,et al.  Efficient boundary conditions for molecular statics models of solids , 2009 .

[48]  Nicholas D. M. Hine,et al.  Supercell size scaling of density functional theory formation energies of charged defects , 2009 .

[49]  M. Luskin,et al.  Formulation and optimization of the energy-based blended quasicontinuum method , 2011, 1112.2377.

[50]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[51]  Vasily V. Bulatov,et al.  Computer Simulations of Dislocations (Oxford Series on Materials Modelling) , 2006 .

[52]  Noam Bernstein,et al.  Hybrid atomistic simulation methods for materials systems , 2009 .