Diffusion - Reaction processes on a backbone structure

Abstract We analyze the diffusion of a system on a backbone structure, by considering the presence of reaction terms. We start our analysis by considering an irreversible reaction process, where the particles are removed from the system. After, we consider the diffusion subjected to a reversible reaction process. The behavior for the system in this scenario depends on the relative rates of diffusion and reaction. For these cases, we obtain exact solutions in terms of the Green function approach and show a rich class of behavior which can be related to anomalous diffusion.

[1]  Sangyoub Lee,et al.  Transport dynamics of complex fluids , 2018, Proceedings of the National Academy of Sciences.

[2]  Roberto Garrappa,et al.  The Prabhakar or three parameter Mittag-Leffler function: Theory and application , 2017, Commun. Nonlinear Sci. Numer. Simul..

[3]  K. Kwapiszewska,et al.  Apparent Anomalous Diffusion in the Cytoplasm of Human Cells: The Effect of Probes' Polydispersity. , 2017, The journal of physical chemistry. B.

[4]  E. K. Lenzi,et al.  Fractional Diffusion Equations and Anomalous Diffusion , 2018 .

[5]  A. A. Tateishi,et al.  Green function for a non-Markovian Fokker-Planck equation: comb-model and anomalous diffusion , 2009 .

[6]  A. Nepomnyashchy,et al.  Subdiffusive and superdiffusive transport in plane steady viscous flows , 2018, Proceedings of the National Academy of Sciences.

[7]  A. Iomin Superdiffusion of cancer on a comb structure , 2005 .

[8]  V. E Arkhincheev Anomalous diffusion and charge relaxation on comb model: exact solutions , 2000 .

[9]  George H. Weiss,et al.  Stochastic Processes in Chemical Physics: The Master Equation , 1977 .

[10]  G. Niklasson,et al.  Anomalous diffusion of ions in electrochromic tungsten oxide films , 2017 .

[11]  A. M. Mathai,et al.  The H-Function: Theory and Applications , 2009 .

[12]  K. Berland,et al.  Propagators and time-dependent diffusion coefficients for anomalous diffusion. , 2008, Biophysical journal.

[13]  N. Alcázar‐Cano,et al.  A general phenomenological relation for the subdiffusive exponent of anomalous diffusion in disordered media. , 2018, Soft matter.

[14]  Barbara A. Bailey,et al.  Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters , 2015, Proceedings of the National Academy of Sciences.

[15]  Daphne Weihs,et al.  Experimental evidence of strong anomalous diffusion in living cells. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  G. Arya,et al.  One-Dimensional Anomalous Diffusion of Gold Nanoparticles in a Polymer Melt. , 2019, Physical review letters.

[17]  John Waldron,et al.  The Langevin Equation , 2004 .

[18]  J. Barker,et al.  Generalized diffusion equation for anisotropic anomalous diffusion. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  E. K. Lenzi,et al.  Ion Motion in Electrolytic Cells: Anomalous Diffusion Evidences. , 2017, The journal of physical chemistry. B.

[20]  V. E. Arkhincheev Diffusion on random comb structure: effective medium approximation , 2002 .

[21]  Thomas Pfohl,et al.  Reaction front propagation of actin polymerization in a comb-reaction system , 2016 .

[22]  R. R. Ribeiro de Almeida,et al.  Electrical transport properties and fractional dynamics of twist-bend nematic liquid crystal phase , 2019, Commun. Nonlinear Sci. Numer. Simul..

[23]  R. Magin,et al.  A Survey of Models of Ultraslow Diffusion in Heterogeneous Materials , 2019, Applied Mechanics Reviews.

[24]  V. Méndez,et al.  Fractional Dynamics in Comb-like Structures , 2018 .

[25]  V. Méndez,et al.  Reaction-subdiffusion front propagation in a comblike model of spiny dendrites. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Andrea Giusti,et al.  A comment on some new definitions of fractional derivative , 2017, Nonlinear Dynamics.

[27]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[28]  Superdiffusive comb: application to experimental observation of anomalous diffusion in one dimension. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[30]  K. Svoboda,et al.  Structure and function of dendritic spines. , 2002, Annual review of physiology.

[31]  Anomalous diffusion on a random comblike structure. , 1987, Physical review. A, General physics.