Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry

Lattice structure and symmetry of two-dimensional (2D) layered materials are of key importance to their fundamental mechanical, thermal, electronic and optical properties. Raman spectroscopy, as a convenient and nondestructive tool, however has its limitations on identifying all symmetry allowing Raman modes and determining the corresponding crystal structure of 2D layered materials with high symmetry like graphene and MoS2. Due to lower structural symmetry and extraordinary weak interlayer coupling of ReS2, we successfully identified all 18 first-order Raman active modes for bulk and monolayer ReS2. Without van der Waals (vdW) correction, our local density approximation (LDA) calculations successfully reproduce all the Raman modes. Our calculations also suggest no surface reconstruction effect and the absence of low frequency rigid-layer Raman modes below 100 cm-1. As a result, combining with Raman and LDA thus provides a general approach for studying the vibrational and structural properties of 2D layered materials with lower symmetry.

[1]  Georg Kresse,et al.  Ab initio Force Constant Approach to Phonon Dispersion Relations of Diamond and Graphite , 1995 .

[2]  M. Hove,et al.  Surface-structure determination of the layered compounds MoS 2 and NbSe 2 by low-energy electron diffraction , 1977 .

[3]  Joonki Suh,et al.  Formation and stability of point defects in monolayer rhenium disulfide , 2014 .

[4]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[5]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[6]  W. Marsden I and J , 2012 .

[7]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[8]  S. H. Chen Group-Theoretical Analysis of Lattice Vibrations in Metallicβ−Sn , 1967 .

[9]  G. Wiegers,et al.  The crystal structure of some rhenium and technetium dichalcogenides , 1996 .

[10]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[11]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[12]  L. Wirtz,et al.  Phonons in single-layer and few-layer MoS2 , 2011 .

[13]  F. Xia,et al.  Interlayer interactions in anisotropic atomically thin rhenium diselenide , 2015, Nano Research.

[14]  Y. Wang,et al.  The shear mode of multilayer graphene. , 2011, Nature materials.

[15]  Andrew G. Glen,et al.  APPL , 2001 .

[16]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[17]  R. Saito,et al.  Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. , 2012, Nano letters.

[18]  T. Taniguchi,et al.  Vibrational properties of hexagonal boron nitride: inelastic X-ray scattering and ab initio calculations. , 2007, Physical review letters.

[19]  Georg Kresse,et al.  Ab initio calculation of the lattice dynamics and phase diagram of boron nitride , 1999 .

[20]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[21]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[22]  S. K. Srivastava,et al.  Layer type tungsten dichalcogenide compounds: their preparation, structure, properties and uses , 1985 .

[23]  K. Michel,et al.  Theory of rigid-plane phonon modes in layered crystals , 2011, 1112.5544.

[24]  K. Abbink,et al.  24 , 1871, You Can Cross the Massacre on Foot.

[25]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .