Robust sliding mode control of a DFIG variable speed wind turbine for power production optimization

A cascaded nonlinear sliding mode controller is proposed for power production optimization of a variable speed wind turbine equipped with a Doubly Fed Induction Generator (DFIG). The inner loop controller ensures a robust tracking of both generator torque and rotor flux, while the outer loop controller achieves a robust tracking of the optimal blade rotor speed to optimize wind energy capture. The global controller is firstly tested with a simplified mathematical model of the aeroturbine and DFIG for a high-turbulence wind speed profile. Secondly, the aeroturbine controller is validated upon a flexible wind turbine simulator. The obtained results show better performance in comparison with the existing controllers in presence of parameters variations.

[1]  H. Siguerdidjane,et al.  Nonlinear Control of Variable Speed Wind Turbines without wind speed measurement , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[2]  Houria Siguerdidjane,et al.  Direct Torque Control of A Doubly-Fed Induction Generator for Variable Speed Wind Turbine Power Regulation , 2007 .

[3]  Shuzhi Sam Ge,et al.  Stable adaptive control and estimation for nonlinear systems - neural and fuzzy approximator techniques: J. T. Spooner, M. Maggiore, R. Ordóñez, K. M. Passino, John Wiley & Sons, Inc., New York, 2002, ISBN: 0-471-41546-4 , 2003, Autom..

[4]  F. Valenciaga,et al.  Variable Structure Control of a Wind Energy Conversion System Based on a Brushless Doubly Fed Reluctance Generator , 2007, IEEE Transactions on Energy Conversion.

[5]  Gordon Lightbody,et al.  Adaptive Control of Variable Speed Wind Turbines , 2001 .

[6]  Thor I. Fossen,et al.  Sliding control of MIMO nonlinear systems , 1991 .

[7]  Y. D. Song,et al.  Variable speed control of wind turbines using nonlinear and adaptive algorithms , 2000 .

[8]  David J. Atkinson,et al.  Stator flux oriented control of a cascaded doubly-fed induction machine , 1999 .

[9]  Salma El Aimani Modélisation des différentes technologies d'éoliennes intégrées dans un réseau de moyenne tension , 2004 .

[10]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[11]  R. Decarlo,et al.  Variable structure control of nonlinear multivariable systems: a tutorial , 1988, Proc. IEEE.

[12]  J. Mcgowan,et al.  Wind Energy Explained , 2002 .

[13]  Kevin M. Passino,et al.  Stable Adaptive Control and Estimation for Nonlinear Systems , 2001 .

[14]  Rui Melício,et al.  Doubly Fed Induction Generator Systems For Variable Speed Wind Turbine , 2005 .

[15]  J. Clare,et al.  Sensorless control of a doubly- fed induction generator for stand alone operation , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[16]  Maureen Hand,et al.  Nonlinear Control of Variable-Speed Wind Turbines for Generator Torque Limiting and Power Optimization , 2006 .

[17]  M. Lindholm Doubly Fed Drives for Variable Speed Wind Turbines , 2004 .

[18]  Jason Jonkman,et al.  FAST User's Guide , 2005 .

[19]  Xin Ma,et al.  Adaptive Extremum Control and Wind Turbine Control , 1997 .

[20]  James F. Manwell,et al.  Book Review: Wind Energy Explained: Theory, Design and Application , 2006 .

[21]  Boubekeur Boukhezzar,et al.  Sur les stratégies de commande pour l'optimisation et la régulation de puissance des éoliennes à vitesse variable , 2006 .

[22]  R. W. De Doncker,et al.  Doubly fed induction generator systems for wind turbines , 2002 .