Chaos in diffusionless Lorenz System with a fractional Order and its Control

This paper aims to investigate the phenomenon of Diffusionless Lorenz system with fractional-order. We discuss the stability of equilibrium points of the fractional-order system theoretically, and analyze the chaotic behaviors and typical bifurcations numerically. We find rich dynamics in fractional-order Diffusionless Lorenz system with appropriate fractional order and system parameters. Besides, the control problem of fractional-order Diffusionless Lorenz system is examined using feedback control technique, and simulation results show the effectiveness of the method.

[1]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[2]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[3]  P. Arena,et al.  Chaotic behavior in noninteger-order cellular neural networks , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  R. Koeller Polynomial operators, stieltjes convolution, and fractional calculus in hereditary mechanics , 1986 .

[5]  Changpin Li,et al.  Synchronization in fractional-order differential systems , 2005 .

[6]  Juebang Yu,et al.  Synchronization of fractional-order chaotic systems , 2005, Proceedings. 2005 International Conference on Communications, Circuits and Systems, 2005..

[7]  Xingyuan Wang,et al.  Chaos control of a fractional order modified coupled dynamos system , 2009 .

[8]  Changpin Li,et al.  Chaos in Chen's system with a fractional order , 2004 .

[9]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[10]  Juebang Yu,et al.  Synchronization of two coupled fractional-order chaotic oscillators , 2005 .

[11]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[12]  Junguo Lu Chaotic dynamics of the fractional-order Lü system and its synchronization , 2006 .

[13]  Julien Clinton Sprott,et al.  Bifurcations and Chaos in fractional-Order Simplified Lorenz System , 2010, Int. J. Bifurc. Chaos.

[14]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Junzhi Yu,et al.  Dynamic analysis of a fractional-order Lorenz chaotic system , 2009 .

[16]  M. Haeri,et al.  Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems , 2007 .

[17]  Jinhu Lü,et al.  Stability analysis of linear fractional differential system with multiple time delays , 2007 .

[18]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[19]  Ahmad Harb,et al.  On nonlinear control design for autonomous chaotic systems of integer and fractional orders , 2003 .

[20]  P. Arena,et al.  Bifurcation and Chaos in Noninteger Order Cellular Neural Networks , 1998 .

[21]  Simin Yu,et al.  Generating hyperchaotic Lü attractor via state feedback control , 2006 .

[22]  Xing-yuan Wang,et al.  Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control , 2009 .

[23]  A. E. Matouk,et al.  Dynamical analysis, feedback control and synchronization of Liu dynamical system , 2008 .

[24]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[25]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[26]  Changpin Li,et al.  On the bound of the Lyapunov exponents for the fractional differential systems. , 2010, Chaos.