Dendrites Impact the Encoding Capabilities of the Axon

This study highlights a new and powerful direct impact of the dendritic tree (the input region of neurons) on the encoding capability of the axon (the output region). We show that the size of the dendritic arbors (its impedance load) strongly modulates the shape of the action potential (AP) onset at the axon initial segment; it is accelerated in neurons with larger dendritic surface area. AP onset rapidness is key in determining the capability of the axonal spikes to encode (phase lock to) rapid changes in synaptic inputs. Hence, our findings imply that neurons with larger dendritic arbors have improved encoding capabilities. This “dendritic size effect” was explored both analytically as well as numerically, in simplified and detailed models of 3D reconstructed layer 2/3 cortical pyramidal cells of rats and humans. The cutoff frequency of spikes phase locking to modulated inputs increased from 100 to 200 Hz in pyramidal cells of young rats to 400–600 Hz in human cells. In the latter case, phase locking reached close to 1 KHz in in vivo-like conditions. This work highlights new and functionally profound cross talk between the dendritic tree and the axon initial segment, providing new understanding of neurons as sophisticated nonlinear input/output devices.

[1]  Romain Brette,et al.  Sharpness of Spike Initiation in Neurons Explained by Compartmentalization , 2013, PLoS Comput. Biol..

[2]  Henry Markram,et al.  Preserving axosomatic spiking features despite diverse dendritic morphology. , 2013, Journal of neurophysiology.

[3]  Yunyong Ma,et al.  Reemerging role of cable properties in action potential initiation , 2013, Proceedings of the National Academy of Sciences.

[4]  Fred Wolf,et al.  Fast Computations in Cortical Ensembles Require Rapid Initiation of Action Potentials , 2013, The Journal of Neuroscience.

[5]  G. Baranauskas,et al.  Spatial mismatch between the Na+ flux and spike initiation in axon initial segment , 2013, Proceedings of the National Academy of Sciences.

[6]  Alla Borisyuk,et al.  Spike Phase Locking in CA1 Pyramidal Neurons Depends on Background Conductance and Firing Rate , 2012, The Journal of Neuroscience.

[7]  Greg J. Stuart,et al.  Signal Processing in the Axon Initial Segment , 2012, Neuron.

[8]  M. Volgushev,et al.  Ultrafast Population Encoding by Cortical Neurons , 2011, The Journal of Neuroscience.

[9]  Javier DeFelipe,et al.  The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity , 2011, Front. Neuroanat..

[10]  W. Rall Core Conductor Theory and Cable Properties of Neurons , 2011 .

[11]  W. N. Ross,et al.  Na+ imaging reveals little difference in action potential–evoked Na+ influx between axon and soma , 2010, Nature Neuroscience.

[12]  M. Higgs,et al.  Conditional Bursting Enhances Resonant Firing in Neocortical Layer 2–3 Pyramidal Neurons , 2009, The Journal of Neuroscience.

[13]  Ad Aertsen,et al.  Dynamical Response Properties of Neocortical Neuron Ensembles: Multiplicative versus Additive Noise , 2009, The Journal of Neuroscience.

[14]  Stefano Fusi,et al.  The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro. , 2008, Cerebral cortex.

[15]  D. McCormick,et al.  Cortical Action Potential Backpropagation Explains Spike Threshold Variability and Rapid-Onset Kinetics , 2008, The Journal of Neuroscience.

[16]  B. Kampa,et al.  Action potential generation requires a high sodium channel density in the axon initial segment , 2008, Nature Neuroscience.

[17]  Idan Segev,et al.  Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: Interweaving in vitro and in vivo experimental observations , 2007, Proceedings of the National Academy of Sciences.

[18]  Johannes J. Letzkus,et al.  Axon Initial Segment Kv1 Channels Control Axonal Action Potential Waveform and Synaptic Efficacy , 2007, Neuron.

[19]  M. Häusser,et al.  Targeted dendrotomy reveals active and passive contributions of the dendritic tree to synaptic integration and neuronal output , 2007, Proceedings of the National Academy of Sciences.

[20]  D. McCormick,et al.  Neurophysiology: Hodgkin and Huxley model — still standing? , 2007, Nature.

[21]  G. Stuart,et al.  Site of Action Potential Initiation in Layer 5 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[22]  M. Volgushev,et al.  Unique features of action potential initiation in cortical neurons , 2006, Nature.

[23]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[24]  Fredric M. Wolf,et al.  Action Potential Onset Dynamics and the Response Speed of Neuronal Populations , 2004, Journal of Computational Neuroscience.

[25]  Nicholas T. Carnevale,et al.  ModelDB: A Database to Support Computational Neuroscience , 2004, Journal of Computational Neuroscience.

[26]  D. Hansel,et al.  How Spike Generation Mechanisms Determine the Neuronal Response to Fluctuating Inputs , 2003, The Journal of Neuroscience.

[27]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[28]  R. Yuste,et al.  Cortical area and species differences in dendritic spine morphology , 2002, Journal of neurocytology.

[29]  Frances S. Chance,et al.  Effects of synaptic noise and filtering on the frequency response of spiking neurons. , 2001, Physical review letters.

[30]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[31]  T. Sejnowski,et al.  [Letters to nature] , 1996, Nature.

[32]  T. Sejnowski,et al.  A model of spike initiation in neocortical pyramidal neurons , 1995, Neuron.

[33]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[34]  O. Prospero-Garcia,et al.  Reliability of Spike Timing in Neocortical Neurons , 1995 .

[35]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[36]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[37]  Idan Segev,et al.  The Impact of Parallel Fiber Background Activity on the Cable Properties of Cerebellar Purkinje Cells , 1992, Neural Computation.

[38]  C. Koch,et al.  Synaptic Background Activity Influences Spatiotemporal Integration in Single Pyramidal Cells. , 1991, The Biological bulletin.

[39]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[40]  C. Nicholson Electric current flow in excitable cells J. J. B. Jack, D. Noble &R. W. Tsien Clarendon Press, Oxford (1975). 502 pp., £18.00 , 1976, Neuroscience.

[41]  W. Rall Time constants and electrotonic length of membrane cylinders and neurons. , 1969, Biophysical journal.

[42]  W. Rall Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. , 1967, Journal of neurophysiology.

[43]  J. Eccles,et al.  The generation of impulses in motoneurones , 1957, The Journal of physiology.