Obstructing DeepFakes by Disrupting Face Detection and Facial Landmarks Extraction

[1]  Siwei Lyu,et al.  In Ictu Oculi: Exposing AI Created Fake Videos by Detecting Eye Blinking , 2018, 2018 IEEE International Workshop on Information Forensics and Security (WIFS).

[2]  Justus Thies,et al.  Face2Face: Real-Time Face Capture and Reenactment of RGB Videos , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Alexei A. Efros,et al.  Everybody Dance Now , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[4]  Dawn Song,et al.  Physical Adversarial Examples for Object Detectors , 2018, WOOT @ USENIX Security Symposium.

[5]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[6]  Yici Cai,et al.  Look at Boundary: A Boundary-Aware Face Alignment Algorithm , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[7]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[8]  Alan L. Yuille,et al.  Improving Transferability of Adversarial Examples With Input Diversity , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Li-Jia Li,et al.  Multi-view Face Detection Using Deep Convolutional Neural Networks , 2015, ICMR.

[10]  Carlos D. Castillo,et al.  UMDFaces: An annotated face dataset for training deep networks , 2016, 2017 IEEE International Joint Conference on Biometrics (IJCB).

[11]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[13]  Luc Van Gool,et al.  The Pascal Visual Object Classes Challenge: A Retrospective , 2014, International Journal of Computer Vision.

[14]  Rama Chellappa,et al.  HyperFace: A Deep Multi-Task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Xu Tang,et al.  PyramidBox: A Context-assisted Single Shot Face Detector , 2018, ECCV.

[16]  Jiajun Lu,et al.  Adversarial Examples that Fool Detectors , 2017, ArXiv.

[17]  Luc Van Gool,et al.  Pose Guided Person Image Generation , 2017, NIPS.

[18]  Rob Fergus,et al.  Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks , 2015, NIPS.

[19]  Ananthram Swami,et al.  The Limitations of Deep Learning in Adversarial Settings , 2015, 2016 IEEE European Symposium on Security and Privacy (EuroS&P).

[20]  Junichi Yamagishi,et al.  MesoNet: a Compact Facial Video Forgery Detection Network , 2018, 2018 IEEE International Workshop on Information Forensics and Security (WIFS).

[21]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[22]  Shuo Yang,et al.  From Facial Parts Responses to Face Detection: A Deep Learning Approach , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[23]  Patrick Pérez,et al.  Deep video portraits , 2018, ACM Trans. Graph..

[24]  Christian Riess,et al.  Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations , 2019, 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW).

[25]  Davis E. King,et al.  Dlib-ml: A Machine Learning Toolkit , 2009, J. Mach. Learn. Res..

[26]  Dong Liu,et al.  Deep High-Resolution Representation Learning for Human Pose Estimation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Chenxi Liu,et al.  Adversarial Attacks Beyond the Image Space , 2017, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Timo Aila,et al.  A Style-Based Generator Architecture for Generative Adversarial Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[30]  Seong Joon Oh,et al.  Adversarial Image Perturbation for Privacy Protection A Game Theory Perspective , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[31]  Chen Qian,et al.  ReenactGAN: Learning to Reenact Faces via Boundary Transfer , 2018, ECCV.

[32]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[33]  Larry S. Davis,et al.  SSH: Single Stage Headless Face Detector , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[34]  Tao Wang,et al.  Face detection using SURF cascade , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[35]  Carlos D. Castillo,et al.  An All-In-One Convolutional Neural Network for Face Analysis , 2016, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017).

[36]  Stefanos Zafeiriou,et al.  300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[37]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[38]  Jiaya Jia,et al.  Aggregation via Separation: Boosting Facial Landmark Detector With Semi-Supervised Style Translation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[39]  Jiahuan Zhou,et al.  Learning Robust Facial Landmark Detection via Hierarchical Structured Ensemble , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[40]  Qiang Xu,et al.  Towards Imperceptible and Robust Adversarial Example Attacks against Neural Networks , 2018, AAAI.

[41]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Samy Bengio,et al.  Adversarial examples in the physical world , 2016, ICLR.

[43]  Deva Ramanan,et al.  Face detection, pose estimation, and landmark localization in the wild , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Shifeng Zhang,et al.  S^3FD: Single Shot Scale-Invariant Face Detector , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[45]  Ian S. Fischer,et al.  Learning to Attack: Adversarial Transformation Networks , 2018, AAAI.

[46]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Steven C. H. Hoi,et al.  Face Detection using Deep Learning: An Improved Faster RCNN Approach , 2017, Neurocomputing.

[48]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[49]  Jan Kautz,et al.  Unsupervised Image-to-Image Translation Networks , 2017, NIPS.

[50]  Josephine Sullivan,et al.  One millisecond face alignment with an ensemble of regression trees , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Xin Yang,et al.  Exposing Deep Fakes Using Inconsistent Head Poses , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[52]  Siwei Lyu,et al.  Robust Adversarial Perturbation on Deep Proposal-based Models , 2018, BMVC.

[53]  David A. Wagner,et al.  Towards Evaluating the Robustness of Neural Networks , 2016, 2017 IEEE Symposium on Security and Privacy (SP).

[54]  Edward J. Delp,et al.  Deepfake Video Detection Using Recurrent Neural Networks , 2018, 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[55]  Weiming Zhang,et al.  Protecting Privacy in Shared Photos via Adversarial Examples Based Stealth , 2017, Secur. Commun. Networks.

[56]  Bin Yang,et al.  Convolutional Channel Features , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[57]  Tianqing Zhu,et al.  Using Adversarial Noises to Protect Privacy in Deep Learning Era , 2018, 2018 IEEE Global Communications Conference (GLOBECOM).

[58]  Shuo Yang,et al.  WIDER FACE: A Face Detection Benchmark , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  Georgios Tzimiropoulos,et al.  How Far are We from Solving the 2D & 3D Face Alignment Problem? (and a Dataset of 230,000 3D Facial Landmarks) , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[60]  Ira Kemelmacher-Shlizerman,et al.  Synthesizing Obama , 2017, ACM Trans. Graph..

[61]  Rama Chellappa,et al.  A deep pyramid Deformable Part Model for face detection , 2015, 2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS).

[62]  Seyed-Mohsen Moosavi-Dezfooli,et al.  Universal Adversarial Perturbations , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[63]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[64]  Qingming Huang,et al.  Facial Landmarks Detection by Self-Iterative Regression based Landmarks-Attention Network , 2018, AAAI.