The MUSE-Faint survey
暂无分享,去创建一个
J. Brinchmann | R. Bacon | M. Gunawardhana | S. Dreizler | D. Krajnović | M. Roth | T. Husser | L. Boogaard | S. Kamann | M. den Brok | S. L. Zoutendijk | A. F. Ramos Padilla
[1] L. Mayer,et al. Improved constraints from ultra-faint dwarf galaxies on primordial black holes as dark matter , 2019, Monthly Notices of the Royal Astronomical Society.
[2] J. Simon,et al. The Faintest Dwarf Galaxies , 2019, Annual Review of Astronomy and Astrophysics.
[3] P. Hopkins,et al. Be it therefore resolved: cosmological simulations of dwarf galaxies with 30 solar mass resolution , 2018, Monthly Notices of the Royal Astronomical Society.
[4] P. Hopkins,et al. Dwarf galaxies in CDM, WDM, and SIDM: disentangling baryons and dark matter physics , 2018, Monthly Notices of the Royal Astronomical Society.
[5] J. Niemeyer,et al. Strong Constraints on Fuzzy Dark Matter from Ultrafaint Dwarf Galaxy Eridanus II. , 2018, Physical review letters.
[6] Tim M. P. Tait,et al. A new era in the search for dark matter , 2018, Nature.
[7] A. Kelz,et al. MUSE crowded field 3D spectroscopy in NGC 300 , 2018, Astronomy & Astrophysics.
[8] C. Brook,et al. Gaia DR2 proper motions of dwarf galaxies within 420 kpc , 2018, Astronomy & Astrophysics.
[9] N. Martin,et al. Current Velocity Data on Dwarf Galaxy NGC 1052-DF2 do not Constrain it to Lack Dark Matter , 2018, 1804.04136.
[10] G. Smoot,et al. Reinterpreting Low Frequency LIGO/Virgo Events as Magnified Stellar-Mass Black Holes at Cosmological Distances , 2018, 1802.05273.
[11] Martin M. Roth,et al. A stellar census in globular clusters with MUSE: The contribution of rotation to cluster dynamics studied with 200 000 stars , 2017, 1710.07257.
[12] Y. Jing,et al. Primordial black holes as dark matter: constraints from compact ultra-faint dwarfs , 2017, 1710.05032.
[13] David Mary,et al. The MUSE Hubble Ultra Deep Field Survey: I. Survey description, data reduction and source detection , 2017, 1710.03002.
[14] Michael Boylan-Kolchin,et al. Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.
[15] M. Raidal,et al. Primordial black hole constraints for extended mass functions , 2017, 1705.05567.
[16] University of Surrey,et al. Probing dark matter with star clusters: a dark matter core in the ultra-faint dwarf Eridanus II , 2017, 1705.01820.
[17] A. Loeb,et al. Dynamics of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as Dark Matter. , 2017, Physical review letters.
[18] M. Kamionkowski,et al. Cosmic microwave background limits on accreting primordial black holes , 2016, 1612.05644.
[19] J. Frieman,et al. Farthest Neighbor: The Distant Milky Way Satellite Eridanus II , 2016, 1611.05052.
[20] Daniel Foreman-Mackey,et al. corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..
[21] Timothy D. Brandt. CONSTRAINTS ON MACHO DARK MATTER FROM COMPACT STELLAR SYSTEMS IN ULTRA-FAINT DWARF GALAXIES , 2016, 1605.03665.
[22] Jieun Choi,et al. MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.
[23] Tucson,et al. DEEP IMAGING OF ERIDANUS II AND ITS LONE STAR CLUSTER , 2016, 1604.08590.
[24] Karl Glazebrook,et al. Marz: Manual and automatic redshifting software , 2016, Astron. Comput..
[25] A. Riess,et al. Did LIGO Detect Dark Matter? , 2016, Physical review letters.
[26] Simon J. Lilly,et al. ZAP -- Enhanced PCA Sky Subtraction for Integral Field Spectroscopy , 2016, 1602.08037.
[27] Von Welch,et al. Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.
[28] Martin M. Roth,et al. MUSE crowded field 3D spectroscopy of over 12 000 stars in the globular cluster NGC 6397 - I. The first comprehensive HRD of a globular cluster , 2016, 1602.01649.
[29] J. Brinchmann,et al. MUSE crowded field 3D spectroscopy of over 12,000 stars in the globular cluster NGC 6397 - II. Probing the internal dynamics and the presence of a central black hole , 2016, 1602.01643.
[30] Aaron Dotter,et al. MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.
[31] P. Prugniel,et al. Carbon stars in the X-Shooter Spectral Library , 2015, 1602.00887.
[32] Dean M. Townsley,et al. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.
[33] B. Yanny,et al. EIGHT NEW MILKY WAY COMPANIONS DISCOVERED IN FIRST-YEAR DARK ENERGY SURVEY DATA , 2015, 1503.02584.
[34] Sergey E. Koposov,et al. BEASTS OF THE SOUTHERN WILD: DISCOVERY OF NINE ULTRA FAINT SATELLITES IN THE VICINITY OF THE MAGELLANIC CLOUDS , 2015, 1503.02079.
[35] P. Hopkins,et al. Forged in FIRE: cusps, cores and baryons in low-mass dwarf galaxies , 2015, 1502.02036.
[36] J. Garc'ia-Bellido,et al. Massive Primordial Black Holes from Hybrid Inflation as Dark Matter and the seeds of Galaxies , 2015, 1501.07565.
[37] Anna Y. Q. Ho,et al. THE CANNON: A DATA-DRIVEN APPROACH TO STELLAR LABEL DETERMINATION , 2015, 1501.07604.
[38] C. Allen,et al. THE END OF THE MACHO ERA, REVISITED: NEW LIMITS ON MACHO MASSES FROM HALO WIDE BINARIES , 2014, 1406.5169.
[39] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[40] C. Brook,et al. The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores , 2013, 1306.0898.
[41] H. Ferguson,et al. THE STELLAR INITIAL MASS FUNCTION OF ULTRA-FAINT DWARF GALAXIES: EVIDENCE FOR IMF VARIATIONS WITH GALACTIC ENVIRONMENT , 2013, 1304.7769.
[42] M. H. Montgomery,et al. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.
[43] Martin M. Roth,et al. Resolving stellar populations with crowded field 3D spectroscopy , 2012, 1211.0445.
[44] Roland Bacon,et al. Design and capabilities of the MUSE data reduction software and pipeline , 2012, Other Conferences.
[45] Sergey E. Koposov,et al. THE COUPLING BETWEEN THE CORE/CUSP AND MISSING SATELLITE PROBLEMS , 2012, 1207.2772.
[46] A. Brooks,et al. WHY BARYONS MATTER: THE KINEMATICS OF DWARF SPHEROIDAL SATELLITES , 2012, 1207.2468.
[47] Alan W. McConnachie,et al. THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.
[48] B. Willman,et al. “GALAXY,” DEFINED , 2012, 1203.2608.
[49] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[50] Douglas P. Finkbeiner,et al. MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.
[51] Frank Timmes,et al. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.
[52] B. Willman,et al. WILLMAN 1—A PROBABLE DWARF GALAXY WITH AN IRREGULAR KINEMATIC DISTRIBUTION , 2010, 1007.3499.
[53] M. Loupias,et al. The MUSE second-generation VLT instrument , 2010, Astronomical Telescopes + Instrumentation.
[54] Gregory D. Martinez,et al. Accurate masses for dispersion-supported galaxies , 2009, 0908.2995.
[55] James Binney,et al. Galactic Dynamics: Second Edition , 2008 .
[56] Andrew A. West,et al. A New Milky Way Companion: Unusual Globular Cluster or Extreme Dwarf Satellite? , 2004, astro-ph/0410416.
[57] A. Robin,et al. A synthetic view on structure and evolution of the Milky Way , 2003, astro-ph/0401052.
[58] P. Kroupa. On the variation of the initial mass function , 2000, astro-ph/0009005.
[59] Walter A. Siegmund,et al. The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.
[60] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[61] S. White,et al. A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.
[62] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[63] S. White,et al. The Structure of cold dark matter halos , 1995, astro-ph/9508025.
[64] M. Irwin,et al. A dynamical study of the Sextans dwarf spheroidal galaxy , 1994 .
[65] A. Renzini,et al. Transverse dissections of the fundamental planes of elliptical galaxies and clusters of galaxies , 1993 .
[66] P. Stetson. DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .
[67] David G. Kirkpatrick,et al. On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.
[68] S. Hawking,et al. Black Holes in the Early Universe , 1974 .
[69] Stephen W. Hawking,et al. Gravitationally collapsed objects of very low mass , 1971 .
[70] T. Husser. 3D-Spectroscopy of Dense Stellar Populations , 2012 .
[71] K. Griest. Galactic microlensing as a method of detecting massive compact halo objects , 1991 .
[72] E. Salpeter. The Luminosity function and stellar evolution , 1955 .