The MUSE-Faint survey

Aims. It has been shown that the ultra-faint dwarf galaxy Eridanus 2 may host a stellar cluster in its centre. If this cluster is shown to exist, it can be used to set constraints on the mass and abundance of massive astrophysical compact halo objects (MACHOs) as a form of dark matter. Previous research has shown promising expectations in the mass range of 10−100 M⊙, but lacked spectroscopic measurements of the cluster. We aim to provide spectroscopic evidence regarding the nature of the putative star cluster in Eridanus 2 and to place constraints on MACHOs as a constituent of dark matter. Methods. We present spectroscopic observations of the central square arcminute of Eridanus 2 from MUSE-Faint, a survey of ultra-faint dwarf galaxies with the Multi Unit Spectroscopic Explorer on the Very Large Telescope. We derived line-of-sight velocities for possible member stars of the putative cluster and for stars in the centre of Eridanus 2. We discuss the existence of the cluster and determine new constraints for MACHOs using the Fokker–Planck diffusion approximation. Results. Out of 182 extracted spectra, we identify 26 member stars of Eridanus 2, seven of which are possible cluster members. We find intrinsic mean line-of-sight velocities of 79.7+3.1−3.8 km s−1 and 76.0+3.2−3.7 km s−1 for the cluster and the bulk of Eridanus 2, respectively, as well as intrinsic velocity dispersions of < 7.6 km s−1 (68% upper limit) and 10.3+3.9−3.2 km s−1, respectively. This indicates that the cluster most likely exists as a distinct dynamical population hosted by Eridanus 2 and that it does not have a surplus of dark matter over the background distribution. Among the member stars in the bulk of Eridanus 2, we find possible carbon stars, alluding to the existence of an intermediate-age population. We derived constraints on the fraction of dark matter that can consist of MACHOs with a given mass between 1 and 105 M⊙. For dark matter consisting purely of MACHOs, the mass of the MACHOs must be less than ∼7.6 M⊙ and ∼44 M⊙ at a 68- and 95% confidence level, respectively.

[1]  L. Mayer,et al.  Improved constraints from ultra-faint dwarf galaxies on primordial black holes as dark matter , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  J. Simon,et al.  The Faintest Dwarf Galaxies , 2019, Annual Review of Astronomy and Astrophysics.

[3]  P. Hopkins,et al.  Be it therefore resolved: cosmological simulations of dwarf galaxies with 30 solar mass resolution , 2018, Monthly Notices of the Royal Astronomical Society.

[4]  P. Hopkins,et al.  Dwarf galaxies in CDM, WDM, and SIDM: disentangling baryons and dark matter physics , 2018, Monthly Notices of the Royal Astronomical Society.

[5]  J. Niemeyer,et al.  Strong Constraints on Fuzzy Dark Matter from Ultrafaint Dwarf Galaxy Eridanus II. , 2018, Physical review letters.

[6]  Tim M. P. Tait,et al.  A new era in the search for dark matter , 2018, Nature.

[7]  A. Kelz,et al.  MUSE crowded field 3D spectroscopy in NGC 300 , 2018, Astronomy & Astrophysics.

[8]  C. Brook,et al.  Gaia DR2 proper motions of dwarf galaxies within 420 kpc , 2018, Astronomy & Astrophysics.

[9]  N. Martin,et al.  Current Velocity Data on Dwarf Galaxy NGC 1052-DF2 do not Constrain it to Lack Dark Matter , 2018, 1804.04136.

[10]  G. Smoot,et al.  Reinterpreting Low Frequency LIGO/Virgo Events as Magnified Stellar-Mass Black Holes at Cosmological Distances , 2018, 1802.05273.

[11]  Martin M. Roth,et al.  A stellar census in globular clusters with MUSE: The contribution of rotation to cluster dynamics studied with 200 000 stars , 2017, 1710.07257.

[12]  Y. Jing,et al.  Primordial black holes as dark matter: constraints from compact ultra-faint dwarfs , 2017, 1710.05032.

[13]  David Mary,et al.  The MUSE Hubble Ultra Deep Field Survey: I. Survey description, data reduction and source detection , 2017, 1710.03002.

[14]  Michael Boylan-Kolchin,et al.  Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.

[15]  M. Raidal,et al.  Primordial black hole constraints for extended mass functions , 2017, 1705.05567.

[16]  University of Surrey,et al.  Probing dark matter with star clusters: a dark matter core in the ultra-faint dwarf Eridanus II , 2017, 1705.01820.

[17]  A. Loeb,et al.  Dynamics of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as Dark Matter. , 2017, Physical review letters.

[18]  M. Kamionkowski,et al.  Cosmic microwave background limits on accreting primordial black holes , 2016, 1612.05644.

[19]  J. Frieman,et al.  Farthest Neighbor: The Distant Milky Way Satellite Eridanus II , 2016, 1611.05052.

[20]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[21]  Timothy D. Brandt CONSTRAINTS ON MACHO DARK MATTER FROM COMPACT STELLAR SYSTEMS IN ULTRA-FAINT DWARF GALAXIES , 2016, 1605.03665.

[22]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[23]  Tucson,et al.  DEEP IMAGING OF ERIDANUS II AND ITS LONE STAR CLUSTER , 2016, 1604.08590.

[24]  Karl Glazebrook,et al.  Marz: Manual and automatic redshifting software , 2016, Astron. Comput..

[25]  A. Riess,et al.  Did LIGO Detect Dark Matter? , 2016, Physical review letters.

[26]  Simon J. Lilly,et al.  ZAP -- Enhanced PCA Sky Subtraction for Integral Field Spectroscopy , 2016, 1602.08037.

[27]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[28]  Martin M. Roth,et al.  MUSE crowded field 3D spectroscopy of over 12 000 stars in the globular cluster NGC 6397 - I. The first comprehensive HRD of a globular cluster , 2016, 1602.01649.

[29]  J. Brinchmann,et al.  MUSE crowded field 3D spectroscopy of over 12,000 stars in the globular cluster NGC 6397 - II. Probing the internal dynamics and the presence of a central black hole , 2016, 1602.01643.

[30]  Aaron Dotter,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.

[31]  P. Prugniel,et al.  Carbon stars in the X-Shooter Spectral Library , 2015, 1602.00887.

[32]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[33]  B. Yanny,et al.  EIGHT NEW MILKY WAY COMPANIONS DISCOVERED IN FIRST-YEAR DARK ENERGY SURVEY DATA , 2015, 1503.02584.

[34]  Sergey E. Koposov,et al.  BEASTS OF THE SOUTHERN WILD: DISCOVERY OF NINE ULTRA FAINT SATELLITES IN THE VICINITY OF THE MAGELLANIC CLOUDS , 2015, 1503.02079.

[35]  P. Hopkins,et al.  Forged in FIRE: cusps, cores and baryons in low-mass dwarf galaxies , 2015, 1502.02036.

[36]  J. Garc'ia-Bellido,et al.  Massive Primordial Black Holes from Hybrid Inflation as Dark Matter and the seeds of Galaxies , 2015, 1501.07565.

[37]  Anna Y. Q. Ho,et al.  THE CANNON: A DATA-DRIVEN APPROACH TO STELLAR LABEL DETERMINATION , 2015, 1501.07604.

[38]  C. Allen,et al.  THE END OF THE MACHO ERA, REVISITED: NEW LIMITS ON MACHO MASSES FROM HALO WIDE BINARIES , 2014, 1406.5169.

[39]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[40]  C. Brook,et al.  The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores , 2013, 1306.0898.

[41]  H. Ferguson,et al.  THE STELLAR INITIAL MASS FUNCTION OF ULTRA-FAINT DWARF GALAXIES: EVIDENCE FOR IMF VARIATIONS WITH GALACTIC ENVIRONMENT , 2013, 1304.7769.

[42]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[43]  Martin M. Roth,et al.  Resolving stellar populations with crowded field 3D spectroscopy , 2012, 1211.0445.

[44]  Roland Bacon,et al.  Design and capabilities of the MUSE data reduction software and pipeline , 2012, Other Conferences.

[45]  Sergey E. Koposov,et al.  THE COUPLING BETWEEN THE CORE/CUSP AND MISSING SATELLITE PROBLEMS , 2012, 1207.2772.

[46]  A. Brooks,et al.  WHY BARYONS MATTER: THE KINEMATICS OF DWARF SPHEROIDAL SATELLITES , 2012, 1207.2468.

[47]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[48]  B. Willman,et al.  “GALAXY,” DEFINED , 2012, 1203.2608.

[49]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[50]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[51]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[52]  B. Willman,et al.  WILLMAN 1—A PROBABLE DWARF GALAXY WITH AN IRREGULAR KINEMATIC DISTRIBUTION , 2010, 1007.3499.

[53]  M. Loupias,et al.  The MUSE second-generation VLT instrument , 2010, Astronomical Telescopes + Instrumentation.

[54]  Gregory D. Martinez,et al.  Accurate masses for dispersion-supported galaxies , 2009, 0908.2995.

[55]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[56]  Andrew A. West,et al.  A New Milky Way Companion: Unusual Globular Cluster or Extreme Dwarf Satellite? , 2004, astro-ph/0410416.

[57]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003, astro-ph/0401052.

[58]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[59]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[60]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[61]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[62]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[63]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[64]  M. Irwin,et al.  A dynamical study of the Sextans dwarf spheroidal galaxy , 1994 .

[65]  A. Renzini,et al.  Transverse dissections of the fundamental planes of elliptical galaxies and clusters of galaxies , 1993 .

[66]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[67]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[68]  S. Hawking,et al.  Black Holes in the Early Universe , 1974 .

[69]  Stephen W. Hawking,et al.  Gravitationally collapsed objects of very low mass , 1971 .

[70]  T. Husser 3D-Spectroscopy of Dense Stellar Populations , 2012 .

[71]  K. Griest Galactic microlensing as a method of detecting massive compact halo objects , 1991 .

[72]  E. Salpeter The Luminosity function and stellar evolution , 1955 .