Locally Decodable Codes: A Brief Survey

Locally decodable codes are error correcting codes that simultaneously provide efficient random-access to encoded data and high noise resilience by allowing reliable reconstruction of an arbitrary data bit from looking at only a small number of randomly chosen codeword bits. Local decodability comes at the price of certain loss in terms of code efficiency. Specifically, locally decodable codes require longer codeword lengths than their classical counterparts. In this work we briefly survey the recent progress in constructions of locally decodable codes.

[1]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[2]  Vince Grolmusz,et al.  Superpolynomial Size Set-systems with Restricted Intersections mod 6 and Explicit Ramsey Graphs , 2000, Comb..

[3]  Richard J. Lipton,et al.  Efficient Checking of Computations , 1990, STACS.

[4]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[5]  Shubhangi Saraf,et al.  Noisy Interpolation of Sparse Polynomials, and Applications , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[6]  Prasad Raghavendra,et al.  A Note on Yekhanin's Locally Decodable Codes , 2007, Electron. Colloquium Comput. Complex..

[7]  Luca Trevisan,et al.  Pseudorandom generators without the XOR Lemma (extended abstract) , 1999, STOC '99.

[8]  Tao Feng,et al.  Query-Efficient Locally Decodable Codes of Subexponential Length , 2010, computational complexity.

[9]  Irving S. Reed,et al.  A class of multiple-error-correcting codes and the decoding scheme , 1954, Trans. IRE Prof. Group Inf. Theory.

[10]  Zeev Dvir,et al.  Matching Vector Codes , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[11]  Luca Trevisan,et al.  Pseudorandom generators without the XOR lemma , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[12]  Jonathan Katz,et al.  On the efficiency of local decoding procedures for error-correcting codes , 2000, STOC '00.

[13]  Joan Feigenbaum,et al.  Hiding Instances in Multioracle Queries , 1990, STACS.

[14]  Amnon Ta-Shma,et al.  A Note on Amplifying the Error-Tolerance of Locally Decodable Codes , 2010, Electron. Colloquium Comput. Complex..

[15]  J. Pachares A table of bias levels useful in radar detection problems , 1958, IRE Trans. Inf. Theory.

[16]  Amnon Ta-Shma,et al.  Local List Decoding with a Constant Number of Queries , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[17]  Sergey Yekhanin,et al.  Towards 3-query locally decodable codes of subexponential length , 2008, JACM.

[18]  David E. Muller,et al.  Application of Boolean algebra to switching circuit design and to error detection , 1954, Trans. I R E Prof. Group Electron. Comput..

[19]  Rudolf Lide,et al.  Finite fields , 1983 .

[20]  Sergey Yekhanin,et al.  Locally Decodable Codes , 2012, Found. Trends Theor. Comput. Sci..

[21]  Yasuhiro Suzuki,et al.  Improved Constructions for Query-Efficient Locally Decodable Codes of Subexponential Length , 2008, IEICE Trans. Inf. Syst..

[22]  Klim Efremenko,et al.  3-Query Locally Decodable Codes of Subexponential Length , 2008 .