On some analytic properties of tempered fractional calculus
暂无分享,去创建一个
[1] Kazuya Kobayashi,et al. On Generalized Gamma Functions Occurring in Diffraction Theory , 1991 .
[2] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[3] K. Diethelm,et al. Fractional Calculus: Models and Numerical Methods , 2012 .
[4] R. Hilfer. Applications Of Fractional Calculus In Physics , 2000 .
[5] W. Deng,et al. High Accuracy Algorithm for the Differential Equations Governing Anomalous Diffusion: Algorithm and Models for Anomalous Diffusion , 2018 .
[6] José António Tenreiro Machado,et al. What is a fractional derivative? , 2015, J. Comput. Phys..
[7] Dumitru Baleanu,et al. On some new properties of fractional derivatives with Mittag-Leffler kernel , 2017, Commun. Nonlinear Sci. Numer. Simul..
[8] D. Anderson,et al. Newly Defined Conformable Derivatives , 2015 .
[9] Dumitru Baleanu,et al. Fractional calculus: models and numerical methods (2nd edition) , 2016 .
[10] S. Arabia,et al. Properties of a New Fractional Derivative without Singular Kernel , 2015 .
[11] Some Incomplete Hypergeometric Functions and Incomplete Riemann-Liouville Fractional Integral Operators , 2019, Mathematics.
[12] St'ephane Dugowson,et al. Les différentielles métaphysiques : histoire et philosophie de la généralisation de l'ordre de la dérivation , 1994 .
[13] T. Abdeljawad,et al. Generalized fractional derivatives generated by a class of local proportional derivatives , 2017 .
[14] Mark M. Meerschaert,et al. Tempered fractional calculus , 2015, J. Comput. Phys..
[15] Dumitru Baleanu,et al. Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions , 2018, Commun. Nonlinear Sci. Numer. Simul..
[16] K. Miller,et al. An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .
[17] R. Agarwal,et al. A comparative study on generating function relations for generalized hypergeometric functions via generalized fractional operators , 2018 .
[18] M. Caputo,et al. A new Definition of Fractional Derivative without Singular Kernel , 2015 .
[19] W. Deng,et al. Well-posedness and numerical algorithm for the tempered fractional differential equations , 2019, Discrete & Continuous Dynamical Systems - B.
[20] É. Picard. Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques , 1881 .
[21] T. R. Prabhakar. A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .
[22] Dumitru Baleanu,et al. On fractional calculus with general analytic kernels , 2019, Appl. Math. Comput..
[23] M. Özarslan,et al. Incomplete Caputo fractional derivative operators , 2018, Advances in Difference Equations.
[24] A. Atangana,et al. New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model , 2016, 1602.03408.
[25] R. K. Saxena,et al. Generalized mittag-leffler function and generalized fractional calculus operators , 2004 .
[26] M. Ali Özarslan,et al. Some generating relations for extended hypergeometric functions via generalized fractional derivative operator , 2010, Math. Comput. Model..
[27] Yuri Luchko,et al. Desiderata for Fractional Derivatives and Integrals , 2019, Mathematics.
[28] B. Ross,et al. A BRIEF HISTORY AND EXPOSITION OF THE FUNDAMENTAL THEORY OF FRACTIONAL CALCULUS , 1975 .
[29] W. Deng,et al. Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations , 2015, 1501.00376.
[30] D. Baleanu,et al. The mean value theorem and Taylor’s theorem for fractional derivatives with Mittag–Leffler kernel , 2018, Advances in Difference Equations.
[31] Zaid M. Odibat,et al. Generalized Taylor's formula , 2007, Appl. Math. Comput..
[32] P. Agarwal,et al. An extension of Caputo fractional derivative operator and its applications , 2016 .
[33] R. G. Buschman. Decomposition of an Integral Operator by Use of Mikusiński Calculus , 1972 .
[34] M. Caputo. Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .