New Trends in the In Situ Enzymatic Recycling of NAD(P)(H) Cofactors

[1]  V. Popov,et al.  Protein engineering of formate dehydrogenase. , 2006, Biomolecular engineering.

[2]  O. Lenz,et al.  A modular system for regeneration of NAD cofactors using graphite particles modified with hydrogenase and diaphorase moieties. , 2012, Chemical communications.

[3]  D. Haltrich,et al.  Exploitation of a Laccase/Meldola’s Blue System for NAD+ Regeneration in Preparative Scale Hydroxysteroid Dehydrogenase‐Catalyzed Oxidations , 2012 .

[4]  G. Whitesides,et al.  Enzyme-catalyzed organic synthesis: a comparison of strategies for in situ regeneration of NAD from NADH , 1985 .

[5]  G. Pfleiderer,et al.  D-glucose dehydrogenase from Bacillus megaterium M 1286: purification, properties and structure. , 1975, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[6]  Sergio Riva,et al.  One-Pot Multienzymatic Synthesis of 12-Ketoursodeoxycholic Acid: Subtle Cofactor Specificities Rule the Reaction Equilibria of Five Biocatalysts Working in a Row , 2009 .

[7]  K. Ma,et al.  Characterization of an Exceedingly Active NADH Oxidase from the Anaerobic Hyperthermophilic Bacterium Thermotoga maritima , 2007, Journal of bacteriology.

[8]  A. Liese,et al.  Overcoming the thermodynamic limitation in asymmetric hydrogen transfer reactions catalyzed by whole cells , 2006, Biotechnology and bioengineering.

[9]  V. Popov,et al.  Structure‐guided alteration of coenzyme specificity of formate dehydrogenase by saturation mutagenesis to enable efficient utilization of NADP+ , 2008, The FEBS journal.

[10]  D. Weuster‐Botz,et al.  Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability , 2012, Applied Microbiology and Biotechnology.

[11]  W. D. de Vos,et al.  Molecular characterization of H2O2-forming NADH oxidases from Archaeoglobus fulgidus. , 2003, European journal of biochemistry.

[12]  Seong-Cheol Park,et al.  Hexameric ring structure of a thermophilic archaeon NADH oxidase that produces predominantly H2O , 2008, The FEBS journal.

[13]  U. Kragl,et al.  Recent Developments in NAD(P)H Regeneration for Enzymatic Reductions in One- and Two-Phase Systems , 2004 .

[14]  Rujirat Hatrongjit,et al.  A novel NADP+-dependent formate dehydrogenase from Burkholderia stabilis 15516: Screening, purification and characterization , 2010 .

[15]  A. Bommarius,et al.  An enzymatic process to ?-ketoglutarate from -glutamate: the coupled system -glutamate dehydrogenase/NADH oxidase , 2004 .

[16]  W. A. van der Donk,et al.  Mechanism and applications of phosphite dehydrogenase. , 2005, Bioorganic chemistry.

[17]  M. Kurina-Sanz,et al.  Promiscuous Substrate Binding Explains the Enzymatic Stereo‐ and Regiocontrolled Synthesis of Enantiopure Hydroxy Ketones and Diols , 2009 .

[18]  Frank Hollmann,et al.  A New Regeneration System for Oxidized Nicotinamide Cofactors , 2009 .

[19]  O. Lenz,et al.  Catalytic Properties of the Isolated Diaphorase Fragment of the NAD+-Reducing [NiFe]-Hydrogenase from Ralstonia eutropha , 2011, PloS one.

[20]  D. Hough,et al.  Purification and characterization of glucose dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum. , 1989, The Biochemical journal.

[21]  T. Fukui,et al.  Application of a novel thermostable NAD(P)H oxidase from hyperthermophilic archaeon for the regeneration of both NAD+ and NADP+ , 2012, Biotechnology and bioengineering.

[22]  A. Glieder,et al.  One-way biohydrogen transfer for oxidation of sec-alcohols. , 2008, Organic letters.

[23]  A. Volbeda,et al.  Principles of sustained enzymatic hydrogen oxidation in the presence of oxygen--the crucial influence of high potential Fe-S clusters in the electron relay of [NiFe]-hydrogenases. , 2013, Journal of the American Chemical Society.

[24]  G. Whitesides,et al.  Enzyme-catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phosphate and the glucose-5-phosphate dehydrogenase from Leuconostoc mesenteroides , 1981 .

[25]  O. Lenz,et al.  H2‐driven cofactor regeneration with NAD(P)+‐reducing hydrogenases , 2013, The FEBS journal.

[26]  Nikhil U. Nair,et al.  Crystal structures of phosphite dehydrogenase provide insights into nicotinamide cofactor regeneration. , 2012, Biochemistry.

[27]  Joerg H. Schrittwieser,et al.  More efficient redox biocatalysis by utilising 1,4-butanediol as a ‘smart cosubstrate’ , 2013 .

[28]  Y. Yamamoto,et al.  Molecular cloning and sequence analysis of the gene encoding the H2O-forming NADH oxidase from Streptococcus mutans. , 1996, Bioscience, biotechnology, and biochemistry.

[29]  D. Mangan,et al.  Overcoming Equilibrium Issues with Carbonyl Reductase Enzymes , 2012 .

[30]  K. Ma,et al.  Purification and characterization of an NADH oxidase from extremely thermophilic anaerobic bacterium Thermotoga hypogea , 2005, Archives of Microbiology.

[31]  A. A. Alekseeva,et al.  Engineering catalytic properties and thermal stability of plant formate dehydrogenase by single-point mutations. , 2012, Protein engineering, design & selection : PEDS.

[32]  A. S. Popova,et al.  Engineering of coenzyme specificity of formate dehydrogenase from Saccharomyces cerevisiae. , 2002, The Biochemical journal.

[33]  S. Kawasaki,et al.  Purification and characterization of an H2O-forming NADH oxidase from Clostridium aminovalericum: existence of an oxygen-detoxifying enzyme in an obligate anaerobic bacteria , 2004, Archives of Microbiology.

[34]  Jung-Kul Lee,et al.  Characterization of H2O-forming NADH oxidase from Streptococcus pyogenes and its application in l-rare sugar production. , 2012, Bioorganic & medicinal chemistry letters.

[35]  W. Kroutil,et al.  Biocatalytic asymmetric hydrogen transfer employing Rhodococcus ruber DSM 44541. , 2003, The Journal of organic chemistry.

[36]  H. Ohta,et al.  Purification and characterization of thermostable H2O2-forming NADH oxidase from 2-phenylethanol-assimilating Brevibacterium sp. KU1309 , 2008, Applied Microbiology and Biotechnology.

[37]  M. Kula,et al.  Stabilization of NAD-dependent formate dehydrogenase from Candida boidinii by site-directed mutagenesis of cysteine residues. , 2000, European journal of biochemistry.

[38]  A. Bommarius,et al.  NAD(P)H oxidase V from Lactobacillus plantarum (NoxV) displays enhanced operational stability even in absence of reducing agents , 2011 .

[39]  Aloysius F. Hartog,et al.  Efficient Regeneration of NADPH in a 3-Enzyme Cascade Reaction by in situ Generation of Glucose 6-Phosphate from Glucose and Pyrophosphate , 2011 .

[40]  Huimin Zhao,et al.  Efficient regeneration of NADPH using an engineered phosphite dehydrogenase , 2007, Biotechnology and bioengineering.

[41]  A. Bommarius,et al.  Cofactor Regeneration of NAD+ from NADH: Novel Water-Forming NADH Oxidases , 2002 .

[42]  W. Hummel,et al.  A single‐point mutation enables lactate dehydrogenase from Bacillus subtilis to utilize NAD+ and NADP+ as cofactor , 2011 .

[43]  A. Egorov,et al.  Catalytic properties and stability of a Pseudomonas sp.101 formate dehydrogenase mutants containing Cys-255-Ser and Cys-255-Met replacements. , 1993, Biochemical and biophysical research communications.

[44]  W. Metcalf,et al.  Phosphite dehydrogenase: an unusual phosphoryl transfer reaction. , 2001, Journal of the American Chemical Society.

[45]  D. Monti,et al.  Redox reactions catalyzed by isolated enzymes. , 2011, Chemical reviews.

[46]  A. Braune,et al.  Purification and characterization of an NADH oxidase from Eubacterium ramulus , 2002, Archives of Microbiology.

[47]  W. Metcalf,et al.  Phosphite dehydrogenase: a versatile cofactor-regeneration enzyme. , 2002, Angewandte Chemie.

[48]  Andreas Liese,et al.  Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part I: processes with isolated enzymes , 2007, Applied Microbiology and Biotechnology.

[49]  A. Clarke,et al.  A single mutation in the NAD-specific formate dehydrogenase from Candida methylica allows the enzyme to use NADP , 2001, Biotechnology Letters.

[50]  Huimin Zhao,et al.  Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. , 2003, Biochemistry.

[51]  M. Lonetto,et al.  Characterization of the Streptococcus pneumoniae NADH oxidase that is required for infection. , 2001, Microbiology.

[52]  Y. Yamamoto,et al.  Identification of two distinct NADH oxidases corresponding to H2O2-forming oxidase and H2O-forming oxidase induced in Streptococcus mutans. , 1993, Journal of general microbiology.

[53]  W. Hummel,et al.  An efficient and selective enzymatic oxidation system for the synthesis of enantiomerically pure D-tert-leucine. , 2003, Organic letters.

[54]  Lasse Greiner,et al.  Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration , 2003 .

[55]  B. Mukhopadhyay,et al.  Characterization of an NADH oxidase of the flavin-dependent disulfide reductase family from Methanocaldococcus jannaschii. , 2009, Microbiology.

[56]  Florian Rudroff,et al.  Efficient Biooxidations Catalyzed by a New Generation of Self‐Sufficient Baeyer–Villiger Monooxygenases , 2009, Chembiochem : a European journal of chemical biology.

[57]  K. Schneider,et al.  Use of cytoplasmic hydrogenase from alcaligenes eutrophus for NADH regeneration , 1983, Biotechnology Letters.

[58]  N. Esaki,et al.  Robust NADH-regenerator: improved α-haloketone-resistant formate dehydrogenase , 2005, Applied Microbiology and Biotechnology.

[59]  W. Hummel,et al.  Isolation and biochemical characterization of a new NADH oxidase from Lactobacillus brevis , 2004, Biotechnology Letters.

[60]  M. Fraaije,et al.  Self-sufficient Baeyer-Villiger monooxygenases: effective coenzyme regeneration for biooxygenation by fusion engineering. , 2008, Angewandte Chemie.

[61]  V. Tishkov,et al.  Study of thermal stability of mutant NADP+-dependent formate dehydrogenases from Pseudomonas sp. 101 , 2006, Doklady Biochemistry and Biophysics.

[62]  V. Popov,et al.  Catalytic mechanism and application of formate dehydrogenase , 2004, Biochemistry (Moscow).

[63]  G. Carrea,et al.  Enzymatic oxidoreduction of steroids in two-phase systems: Effects of organic solvents on enzyme kinetics and evaluation of the performance of different reactors , 1988 .

[64]  O. Kandler,et al.  Comparative studies of lactate dehydrogenases in lactic acid bacteria. Amino-acid composition of an active-site region and chemical properties of the L-lactate dehydrogenase of Lactobacillus casei, Lactobacillus curvatus, Lactobacillus plantarum, and Lactobacillus acidophilus. , 1977, European journal of biochemistry.

[65]  W. Hummel,et al.  NADH oxidase from Lactobacillus brevis: a new catalyst for the regeneration of NAD , 2003 .

[66]  Huimin Zhao,et al.  Directed Evolution of a Thermostable Phosphite Dehydrogenase for NAD(P)H Regeneration , 2005, Applied and Environmental Microbiology.

[67]  R. Ludwig,et al.  Guidelines for the Application of NAD(P)H Regenerating Glucose Dehydrogenase in Synthetic Processes , 2013 .

[68]  Y. Makino,et al.  Gene cloning and characterization of dihydrolipoamide dehydrogenase from Microbacterium luteolum: A useful enzymatic regeneration system of NAD+ from NADH. , 2010, Journal of bioscience and bioengineering.

[69]  Simone L. Pival,et al.  Novel Chemo‐Enzymatic Mimic of Hydrogen Peroxide‐Forming NAD(P)H Oxidase for Efficient Regeneration of NAD+ and NADP+ , 2008 .

[70]  Zhongyi Jiang,et al.  Methods for the regeneration of nicotinamide coenzymes , 2013 .